skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of bromine substitution on blue phosphorescent trans -(N-heterocyclic carbene)Pt( ii ) acetylide complexes
N-heterocyclic carbene complexes of the typetrans-(NHC)2PtII(CC–Ar)2(where Ar = phenyl or substituted phenyl) are of interest as violet and blue phosphors.  more » « less
Award ID(s):
1904288
PAR ID:
10472032
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
52
Issue:
33
ISSN:
1477-9226
Page Range / eLocation ID:
11535 to 11542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermal Sn–C cleavage in the diarylstannylene Sn(AriPr4)2(AriPr4= C6H3-2,6-(C6H3-2,6-iPr2)2) was used to generate ˙Sn(AriPr4) and ˙AriPr4radicals for alkyne arylstannylation. 
    more » « less
  2. To expand the range of donor atoms known to stabilize 4fn5d1Ln(ii) ions beyond C, N, and O first row main group donor atoms, the Ln(iii) terphenylthiolate iodides, LnIII(SAriPr6)2I (AriPr6= C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to LnII(SAriPr6)2complexes. 
    more » « less
  3. The title complex, (1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether molecule and the two oxygen atoms of the oxalatotriphenylstannate anion. It crystallizes in the monoclinic crystal system within the space groupP21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming acis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H...O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending alonga-axis direction. The primary inter-chain interactions are van der Waals forces. 
    more » « less
  4. The crystal structure of the title compound, C15H20N2orDippIm, is reported. At 106 (2) K, the molecule has monoclinicP21/c symmetry with four molecules in the unit cell. The imidazole ring is rotated 80.7 (1)° relative to the phenyl ring. Intermolecular stabilization primarily results from close contacts between the N atom at the 3-position on the imidazole ring and the C—H bond at the 4-position on the neighboringDippIm, with aryl–aryl distances outside of the accepted distance of 5 Å for π-stacking. 
    more » « less
  5. Abstract The first consistent series of mononuclear 17‐electron complexes of three Group 7 elements has been isolated in crystalline form and studied by X‐ray diffraction and spectroscopic methods. The paramagnetic compounds have a composition of [M0(CO)(CNp‐F‐ArDArF2)4] (M=Mn, Tc, Re; ArDArF2=2,6‐(3,5‐(CF3)2C6H3)2C6H2F) and are stabilized by four sterically encumbering isocyanides, which prevent the metalloradicals from dimerization. They have a square pyramidal structure with the carbonyl ligands as apexes. The frozen‐solution EPR spectra of the rhenium and technetium compounds are clearly anisotropic with large99Tc and185,187Re hyperfine interactions for one component. High‐field EPR (Q band and W band) has been applied for the elucidation of the EPR parameters of the manganese(0) complex. 
    more » « less