skip to main content


Title: How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale?
Social interactions with conspecifics are key to the fitness of most animals and, through the transmission opportunities they provide, are also key to the fitness of their parasites. As a result, research to date has largely focused on the role of host social behavior in imposing selection on parasites, particularly their virulence and transmission phenotypes. However, host social behavior also influences the distribution of parasites among hosts, with implications for their evolution through non-random mating, gene flow, and genetic drift, and thus ability to respond to that selection. Here, we review the paucity of empirical studies on parasites, and draw from empirical studies of free-living organisms and population genetic theory to propose several mechanisms by which host social behavior potentially drives parasite evolution through these less-well studied mechanisms. We focus on the guppy host and Gyrodactylus (Monogenea) ectoparasitic flatworm system and follow a spatially hierarchical outline to highlight that social behavior varies between individuals, and between host populations across the landscape, generating a mosaic of ecological and evolutionary outcomes for their infecting parasites. We argue that the guppy-Gyrodactylus system presents a unique opportunity to address this fundamental knowledge gap in our understanding of the connection between host social behavior and parasite evolution. Individual differences in host social behavior generates fine-scale changes in the spatial distribution of parasite genotypes, shape the size, and diversity of their infecting parasite populations and may generate non-random mating on, and non-random transmission between hosts. While at population and metapopulation level, variation in host social behavior interacts with landscape structure to affect parasite gene flow, effective population size, and genetic drift to alter the coevolutionary potential of local adaptation.  more » « less
Award ID(s):
2010741
NSF-PAR ID:
10472040
Author(s) / Creator(s):
; ;
Publisher / Repository:
Behavioral Ecology and Sociobiology
Date Published:
Journal Name:
Behavioral Ecology and Sociobiology
Volume:
75
Issue:
11
ISSN:
0340-5443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forPsyntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofPsyntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations.

     
    more » « less
  2. Infectious disease can threaten host populations. Hosts can rapidly evolve resistance during epidemics, with this evolution often modulated by fitness trade-offs (e.g., between resistance and fecundity). However, many organisms switch between asexual and sexual reproduction, and this shift in reproductive strategy can also alter how resistance in host populations persists through time. Recombination can shuffle alleles selected for during an asexual phase, uncoupling the combinations of alleles that facilitated resistance to parasites and altering the distribution of resistance phenotypes in populations. Furthermore, in host species that produce diapausing propagules (e.g., seeds, spores, or resting eggs) after sex, accumulation of propagules into and gene flow out of a germ bank introduce allele combinations from past populations. Thus, recombination and gene flow might shift populations away from the trait distribution reached after selection by parasites. To understand how recombination and gene flow alter host population resistance, we tracked the genotypic diversity and resistance distributions of two wild populations of cyclical parthenogens. In one population, resistance and genetic diversity increased after recombination whereas, in the other, recombination did not shift already high resistance and genetic diversity. In both lakes, resistance remained high after temporal gene flow. This observation surprised us: due to costs to resistance imposed by a fecundity-resistance trade-off, we expected that high population resistance would be a transient state that would be eroded through time by recombination and gene flow. Instead, low resistance was the transient state, while recombination and gene flow re-established or maintained high resistance to this virulent parasite. We propose this outcome may have been driven by the joint influence of fitness trade-offs, genetic slippage after recombination, and temporal gene flow via the egg bank. 
    more » « less
  3. Abstract

    Toxoplasma gondiiis a protozoan parasite capable of infecting any warm-blooded species and can increase risk-taking in intermediate hosts. Despite extensive laboratory research on the effects ofT. gondiiinfection on behaviour, little is understood about the effects of toxoplasmosis on wild intermediate host behavior. Yellowstone National Park, Wyoming, USA, has a diverse carnivore community including gray wolves (Canis lupus) and cougars (Puma concolor), intermediate and definitive hosts ofT. gondii, respectively. Here, we used 26 years of wolf behavioural, spatial, and serological data to show that wolf territory overlap with areas of high cougar density was an important predictor of infection. In addition, seropositive wolves were more likely to make high-risk decisions such as dispersing and becoming a pack leader, both factors critical to individual fitness and wolf vital rates. Due to the social hierarchy within a wolf pack, we hypothesize that the behavioural effects of toxoplasmosis may create a feedback loop that increases spatial overlap and disease transmission between wolves and cougars. These findings demonstrate that parasites have important implications for intermediate hosts, beyond acute infections, through behavioural impacts. Particularly in a social species, these impacts can surge beyond individuals to affect groups, populations, and even ecosystem processes.

     
    more » « less
  4. null (Ed.)
    Abstract An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host–parasite coevolution. 
    more » « less
  5. Rinaldi, Gabriel (Ed.)
    CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. Gene drive technology in mollusks has received little attention despite the role of freshwater snails as hosts of parasitic flukes causing 200 million annual cases of schistosomiasis. A successful drive in snails must overcome self-fertilization, a common feature of host snails which could prevents a drive’s spread. Here we developed a novel population genetic model accounting for snails’ mixed mating and population dynamics, susceptibility to parasite infection regulated by multiple alleles, fitness differences between genotypes, and a range of drive characteristics. We integrated this model with an epidemiological model of schistosomiasis transmission to show that a snail population modification drive targeting immunity to infection can be hindered by a variety of biological and ecological factors; yet under a range of conditions, disease reduction achieved by chemotherapy treatment of the human population can be maintained with a drive. Alone a drive modifying snail immunity could achieve significant disease reduction in humans several years after release. These results indicate that gene drives, in coordination with existing public health measures, may become a useful tool to reduce schistosomiasis burden in selected transmission settings with effective CRISPR construct design and evaluation of the genetic and ecological landscape. 
    more » « less