skip to main content


Title: Categorizing Classroom-based Argumentation in Elementary STEM Lessons: Applying Walton’s Types of Argument Dialogue
Argumentation is a practice that spans STEM disciplines and is an explicit goal for K12 students in reform-based standards documents. The purpose of this study was to investigate the applicability of Douglas Walton’s theoretical model for describing the types of argument dialogue encountered in elementary classrooms focused on learning concepts in science, mathematics, and computer coding. We examined two elementary teachers’ STEM classrooms to explore the types of argument dialogue that were evident. We found evidence of six types of dialogues: persuasion, negotiation, information-seeking, deliberation, inquiry, and discovery based on Walton’s model. Our findings demonstrate the applicability of Walton’s types of argument dialogue to argumentation in elementary STEM contexts. Even though our work takes place in the United States with teachers of children in grades 3-5 (ages 8-10 years), we believe our approach is applicable to other dialogues found in K12 STEM education. We postulate that students having opportunities to engage in arguments with a diverse range of goals (e.g., to prove a hypothesis, to persuade, or to exchange information) is important for their development in learning how to argue in STEM.

 
more » « less
Award ID(s):
1741910
NSF-PAR ID:
10472055
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Aydeniz, Mehmet
Publisher / Repository:
Journal of Research in STEM Education
Date Published:
Journal Name:
Journal of Research in STEM Education
Volume:
8
Issue:
2
ISSN:
2149-8504
Page Range / eLocation ID:
79 to 110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms. 
    more » « less
  2. Brown, Ryan ; Antink-Meyer, Allison (Ed.)
    Current education reforms call for engaging students in learning science, technology, engineering, and mathematics (STEM) in an integrative way. This critical case study of one fourth grade teacher investigated the use of educational robots (ER) not only for teaching coding, but as an instructional support in teaching mathematical concepts. To support teachers in teaching coding in an integrative and logical manner, our team developed the Collective Argumentation Learning and Coding (CALC) approach. The CALC approach consists of three elements: choice of task, coding content, and teacher support for argumentation. After a cohort of elementary teachers completed a professional development course, we followed them into their classrooms to support and document implementation of the CALC approach. Data for this case consisted of video recordings of two lessons, a Pre-interview, and Post-interview after each lesson. Research questions included: How does an elementary teacher use the CALC approach (integrative STEM approach) to teach mathematics concepts with ER? What are the teacher’s perspectives towards teaching mathematics with ER using an integrative STEM approach? Results from this critical case provide evidence that teachers can successfully integrate ER into the mathematics curriculum without losing coherence of mathematics topics and while remaining sensitive to students’ needs. 
    more » « less
  3. Abstract

    It is important to understand how students reason in K-12 integrated STEM settings to better prepare teachers to engage their students in integrated STEM tasks. To understand the reasoning that occurs in these settings, we used the lens of collective argumentation, specifically attending to the types of warrants elementary students and their teachers provided and accepted in integrated STEM contexts and how teachers supported students in providing these warrants. We watched 103 h of classroom instruction from 10 elementary school teachers and analyzed warrants that occurred in arguments in mathematics, coding, and integrated contexts to develop a typology of warrants contributed in mathematics and coding arguments. We found that these students made their warrants explicit the majority of the time, regardless of the teacher’s presence or absence. When teachers were present, they supported argumentation in various ways; however, they offered less support in integrated contexts. Additionally, we found students relied more on visual observations in coding contexts than in mathematics or integrated contexts, where they often provided warrants based on procedures required to accomplish a task. These findings have implications for improving integrated STEM instruction through engaging students in argumentation.

     
    more » « less
  4. Abstract

    In order to deepen students' understanding of natural phenomenon and how scientific knowledge is constructed, it is critical that science teachers learn how to engage students in productive scientific argumentation. Simulations for teachers are one possible solution to providing practice‐based spaces where novices can approximate the work of facilitating argumentation‐focused science discussions. This study's purpose is to examine how preservice elementary teachers (PSETs) engage in this ambitious teaching practice within an online simulated classroom composed of five upper elementary student avatars. In this study, which is part of a larger research project, we developed and used four performance tasks to provide opportunities for PSETs to practice facilitating argumentation‐focused science discussions within a simulated classroom. The student avatars were controlled on the backend by a human‐in‐the‐loop who was trained to respond to the teachers' prompts in real time using predesigned student thinking profiles and specific technology, such as voice modulation software. We used analysis of transcripts from the PSETs' video‐recorded discussions to examine how the PSETs engaged the student avatars in scientific argumentation, with particular attention to the teaching moves that supported argument construction and argument critique. We also used survey and interview data to examine how the PSETs viewed the usefulness of these simulation‐based tools to support their learning. Findings show that there was variability in the extent to which the PSETs engaged the student avatars in argument construction and argument critique and the teaching moves that the PSETs used to do so. Results also indicated that PSETs strongly perceive the value of using such tools within teacher education. Implications for the potential of simulations to provide insights into novices' ability to engage students in scientific argumentation and to support them in learning in and from their practice, including how to productively integrate these tools in teacher education, are discussed.

     
    more » « less
  5. This project, titled Collective Argumentation Learning and Coding (CALC), aims to use the principles of collective argumentation to teach coding through appropriate reasoning. Creating and critiquing arguments as part of a coding activity promotes a more structured approach rather than the trial-and-error coding activity commonly used by novice programmers. Teaching coding via collective argumentation allows teachers to use methods that are already in use in mathematics and science instruction to teach coding, thus increasing the probability that it will be taught in conjunction with mathematics and science as regular parts of classroom instruction rather than relegated to an after-school or enrichment activity for only some students. Specific objectives of the CALC project are to - increase the attention that coding is given in the elementary classrooms taught by our participating teachers, and -direct students away from informal approaches (e.g.trial-and-error) to develop code to the more formal, structured approach recommended for novice programmers. Our research activities investigate teachers’ understanding of argumentation using the CALC concept and how the implementation of the CALC concept helps students (grades 3-5) learn how to code. The CALC approach supports the learning of coding by providing teachers with a formal, structured means to a) trace the growth of students’ understanding, and misunderstanding, of ideas (i.e., coding) as they form, b) facilitate students’ use of evidence, not opinion, to select a solution among multiple solutions (i.e., different sequencing of the code), and c) help each student realize she/he, as well as others, is a legitimate participant (i.e., a programmer) in the activity of developing, assessing and implementing an idea (e.g., coding of a robot). This paper/presentation discussed the first phase of an on-going investigation and focuses on a prototype graduate-level course designed for and taught to practicing elementary school teachers. The discussion outlines how the course impacted the participating teachers content knowledge of coding and their belief that coding can be made an integral part of everyday lessons, not as an add-on activity. 
    more » « less