skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Categorizing Classroom-based Argumentation in Elementary STEM Lessons: Applying Walton’s Types of Argument Dialogue
Argumentation is a practice that spans STEM disciplines and is an explicit goal for K12 students in reform-based standards documents. The purpose of this study was to investigate the applicability of Douglas Walton’s theoretical model for describing the types of argument dialogue encountered in elementary classrooms focused on learning concepts in science, mathematics, and computer coding. We examined two elementary teachers’ STEM classrooms to explore the types of argument dialogue that were evident. We found evidence of six types of dialogues: persuasion, negotiation, information-seeking, deliberation, inquiry, and discovery based on Walton’s model. Our findings demonstrate the applicability of Walton’s types of argument dialogue to argumentation in elementary STEM contexts. Even though our work takes place in the United States with teachers of children in grades 3-5 (ages 8-10 years), we believe our approach is applicable to other dialogues found in K12 STEM education. We postulate that students having opportunities to engage in arguments with a diverse range of goals (e.g., to prove a hypothesis, to persuade, or to exchange information) is important for their development in learning how to argue in STEM.  more » « less
Award ID(s):
1741910
PAR ID:
10472055
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Aydeniz, Mehmet
Publisher / Repository:
Journal of Research in STEM Education
Date Published:
Journal Name:
Journal of Research in STEM Education
Volume:
8
Issue:
2
ISSN:
2149-8504
Page Range / eLocation ID:
79 to 110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It is important to understand how students reason in K-12 integrated STEM settings to better prepare teachers to engage their students in integrated STEM tasks. To understand the reasoning that occurs in these settings, we used the lens of collective argumentation, specifically attending to the types of warrants elementary students and their teachers provided and accepted in integrated STEM contexts and how teachers supported students in providing these warrants. We watched 103 h of classroom instruction from 10 elementary school teachers and analyzed warrants that occurred in arguments in mathematics, coding, and integrated contexts to develop a typology of warrants contributed in mathematics and coding arguments. We found that these students made their warrants explicit the majority of the time, regardless of the teacher’s presence or absence. When teachers were present, they supported argumentation in various ways; however, they offered less support in integrated contexts. Additionally, we found students relied more on visual observations in coding contexts than in mathematics or integrated contexts, where they often provided warrants based on procedures required to accomplish a task. These findings have implications for improving integrated STEM instruction through engaging students in argumentation. 
    more » « less
  2. Brown, Ryan; Antink-Meyer, Allison (Ed.)
    Current education reforms call for engaging students in learning science, technology, engineering, and mathematics (STEM) in an integrative way. This critical case study of one fourth grade teacher investigated the use of educational robots (ER) not only for teaching coding, but as an instructional support in teaching mathematical concepts. To support teachers in teaching coding in an integrative and logical manner, our team developed the Collective Argumentation Learning and Coding (CALC) approach. The CALC approach consists of three elements: choice of task, coding content, and teacher support for argumentation. After a cohort of elementary teachers completed a professional development course, we followed them into their classrooms to support and document implementation of the CALC approach. Data for this case consisted of video recordings of two lessons, a Pre-interview, and Post-interview after each lesson. Research questions included: How does an elementary teacher use the CALC approach (integrative STEM approach) to teach mathematics concepts with ER? What are the teacher’s perspectives towards teaching mathematics with ER using an integrative STEM approach? Results from this critical case provide evidence that teachers can successfully integrate ER into the mathematics curriculum without losing coherence of mathematics topics and while remaining sensitive to students’ needs. 
    more » « less
  3. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms. 
    more » « less
  4. Olanoff, D.; Johnson, K.; Spitzer, S. M. (Ed.)
    Argumentation is widely used in teaching mathematics, but little research has been done on argumentation in teaching integrated mathematics and coding. As part of a larger study investigating collective argumentation in teaching mathematics, science, and coding, we classified the warrants given by elementary-age students who were engaged in argumentation in mathematics and coding. Three ma}or categories - calculation, visual, and unformalized knowledge - accounted for the majority of warrants given. Further analysis revealed differences in types of warrants when the primary focus of the argument was coding versus when the primary focus of the argument was mathematics. Our results suggest that expecting students to provide reasons for modifying their code, similar to what is expected in mathematics arguments, helps move them away from a trial-and-error to a more structured approach to coding. 
    more » « less
  5. This project, titled Collective Argumentation Learning and Coding (CALC), is based on our belief that if teachers had an instructional approach that allowed them to teach coding alongside mathematics and science in integrated ways, then coding would become a mainstream subject taught in the elementary school curriculum. However, few practicing elementary school teachers have the academic backgrounds that allow them to teach coding in a manner that goes beyond allowing students to learn how to code through trial-and-error experimentation and as an additive learning activity such as an after-school program. Current content and practice standards call for the use of argumentation in the teaching of mathematics and science. This project is focused on extending the collective argumentation framework for the teaching of mathematics to the teaching of coding. Teachers at our partnering school district have completed the first design of a prototype CALC course where they used collective argumentation to learn how to code educational robotics. At the end of this course, the teachers developed lesson plans that were implemented in grades 3, 4 and 5.This paper and conference presentation focused on the research question, how do elementary school teachers use the CALC approach to support their students’ learning of coding, mathematics, and science content and practices? Overall, the implementation of the CALC approach demonstrated the growth of the teachers in their ability to teach coding as a reasoning process and as a means to integrate it into everyday classroom activities. 
    more » « less