skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Runaway and Hypervelocity Stars from Compact Object Encounters in Globular Clusters
Abstract The dense environments in the cores of globular clusters (GCs) facilitate many strong dynamical encounters among stellar objects. These encounters have been shown to be capable of ejecting stars from the host GC, whereupon they become runaway stars, or hypervelocity stars (HVSs) if unbound to the galactic potential. We study high-speed stellar ejecta originating from GCs by using Monte CarloN-body models, in particular focusing on binary–single encounters involving compact objects. We pair our model-discriminated populations with observational catalogs of Milky Way GCs (MWGCs) to compose a present-day Galactic population of stellar ejecta. We find that these kinds of encounters can accelerate stars to velocities in excess of 2000 km s−1, to speeds beyond the previously predicted limits for ejecta from star-only encounters and in the same regime of Galactic center ejections. However, the same ejections can only account for 1.5%–20% of the total population of stellar runaways, and only 0.0001%–1% of HVS, with similar relative rates found for runaway white dwarfs. We also provide credible regions for ejecta from 149 MWGCs, which we hope will be useful as supplementary evidence when pairing runaway stars with origin GCs.  more » « less
Award ID(s):
2310362
PAR ID:
10472101
Author(s) / Creator(s):
;
Publisher / Repository:
A
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
953
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Intermediate-mass black holes (IMBHs) may be the link between stellar mass holes and the supermassive variety in the nuclei of galaxies, and globular clusters (GCs) may be one of the most promising environments for their formation. Here, we carry out a pilot study of the observability of tidal disruption events (TDEs) from 103M<M< 105MIMBHs embedded in stellar cusps at the center of GCs. We model the long super-Eddington accretion phase and ensuing optical flare, and derive the disruption rate of main-sequence stars as a function of black hole mass and GC properties with the help of a 1D Fokker–Planck approach. The photospheric emission of the adiabatically expanding outflow dominates the observable radiation and peaks in the near-ultraviolet/optical bands, outshining the brightness of the (old) stellar population of GCs in Virgo for a period of months to years. A search for TDE events in a sample of nearly 4000 GCs observed at multiple epochs by the Next Generation Virgo Cluster Survey yields null results. Given our model predictions, this sample is too small to set stringent constraints on the present-day occupation fraction of GCs hosting IMBHs. Naturally, better simulations of the properties of the cluster central stellar distribution, TDE light curves, and rates, together with larger surveys of GCs are all needed to gain deeper insights into the presence of IMBHs in GCs. 
    more » « less
  2. ABSTRACT The formation and evolution of galaxies have proved sensitive to the inclusion of stellar feedback, which is therefore crucial to any successful galaxy model. We present INFERNO, a new model for hydrodynamic simulations of galaxies, which incorporates resolved stellar objects with star-by-star calculations of when and where the injection of enriched material, momentum, and energy takes place. INFERNO treats early stellar kinematics to include phenomena such as walkaway and runaway stars. We employ this innovative model on simulations of a dwarf galaxy and demonstrate that our physically motivated stellar feedback model can drive vigorous galactic winds. This is quantified by mass and metal loading factors in the range of 10–100, and an energy loading factor close to unity. Outflows are established close to the disc, are highly multiphase, spanning almost 8 orders of magnitude in temperature, and with a clear dichotomy between mass ejected in cold, slow-moving (T ≲ 5 × 104 K, v < 100 km s−1) gas and energy ejected in hot, fast-moving (T > 106 K, v > 100 km s−1) gas. In contrast to massive disc galaxies, we find a surprisingly weak impact of the early stellar kinematics, with runaway stars having little to no effect on our results, despite exploding in diffuse gas outside the dense star-forming gas, as well as outside the galactic disc entirely. We demonstrate that this weak impact in dwarf galaxies stems from a combination of strong feedback and a porous interstellar medium, which obscure any unique signatures that runaway stars provide. 
    more » « less
  3. Abstract The dynamical formation of binary black holes (BBHs) in globular clusters (GCs) may contribute significantly to the observed gravitational-wave (GW) merger rate. Furthermore, the Laser Interferometer Space Antenna (LISA) may detect many BBH sources from GCs at mHz frequencies, enabling the characterization of such systems within the Milky Way and nearby Universe. In this work, we use Monte CarloN-body simulations to construct a realistic sample of Galactic clusters, thus estimating the population, detectability, and parameter measurement accuracy of BBHs hosted within them. In particular, we show that the GW signal from 0.7 ± 0.7, 2.0 ± 1.7, 3.6 ± 2.3, and 13.4 ± 4.7 BBHs in Milky Way GCs can exceed the signal-to-noise ratio (SNR) threshold of SNR = 30, 5, 3, and 1 for a 10 yr LISA observation, with ∼50% of detectable sources exhibiting high eccentricities (e ≳ 0.9). Moreover, the Fisher matrix and Bayesian analyses of the GW signals indicate that these systems typically feature highly resolved orbital frequencies (δforb/forb ∼ 10−7to 10−5) and eccentricities (δe/e ∼ 10−3to 0.1), as well as a measurable total mass when SNR exceeds ∼20. Notably, we show that high-SNR BBHs can be confidently localized to specific Milky Way GCs with a sky localization accuracy ofδΩ ∼ 1 deg2, and we address the large uncertainties in their distance measurement (δR ∼ 0.3–20 kpc). The detection and localization of even a single BBH in a Galactic GC would allow accurate tracking of its long-term orbital evolution, enable a direct test of the role of GCs in BBH formation, and provide a unique probe into the evolutionary history of Galactic clusters. 
    more » « less
  4. Almost all globular clusters (GCs) contain multiple stellar populations consisting of stars with varying helium and light-element abundances. These populations include first-population stars, which exhibit similar chemical compositions as halo-field stars with comparable [Fe/H], and second-population stars, characterized by higher helium and nitrogen abundances along with reduced levels of oxygen and carbon. Nowadays, one of the most intriguing open questions about GCs pertains to the formation and evolution of their multiple populations. Recent works based on N-body simulations of GCs show that the fractions and characteristics of binary stars can serve as dynamic indicators of the formation period of multiple-population GCs and their subsequent dynamical evolution. Nevertheless, the incidence of binaries among multiple populations is still poorly studied. Moreover, the few available observational studies focus only on the bright stars of a few GCs. We used deep images of the GC 47 Tucanae collected with theJames Webband theHubblespace telescopes to investigate the incidence of binaries among multiple populations of M dwarfs and bright main- sequence stars. To reach this objective, we used UV, optical, and near-infrared filters to construct photometric diagrams that allowed us to disentangle binary systems and multiple populations. Moreover, we compared these observations with a large sample of simulated binaries. In the cluster central regions, the incidence of binaries among first-population stars is only slightly higher than that of second- population stars. In contrast, in the external regions, the majority of the studied binaries (≳85%) are composed of first-population stars. These results are consistent with the GC formation scenarios in which the second-population stars originate in the cluster’s central region, forming a compact and dense stellar group within a more extended system of first-population stars. 
    more » « less
  5. Abstract We report on the results of an image-based search for pulsar candidates toward the Galactic bulge. We used mosaic images from the MeerKAT radio telescope that were taken as part of a 173 deg2survey of the bulge and Galactic center of our Galaxy atLband (856–1712 MHz) in all four StokesI,Q,U, andV. The image rms noise levels of 12–17μJy ba−1represent a significant increase in sensitivity over past image-based pulsar searches. Our primary search criterion was circular polarization, but we used other criteria, including linear polarization, in-band spectral index, compactness, variability, and multiwavelength counterparts to select pulsar candidates. We first demonstrate the efficacy of this technique by searching for polarized emission from known pulsars and comparing our results with measurements from the literature. Our search resulted in a sample of 75 polarized sources. Bright stars or young stellar objects were associated with 28 of these sources, including a small sample of highly polarized dwarf stars with pulsar-like steep spectra. Comparing the properties of this sample with the known pulsars, we identified 30 compelling candidates for pulsation follow-up, including two sources with both strong circular and linear polarization. The remaining 17 sources are either pulsars or stars, but we cannot rule out an extragalactic origin or image artifacts among the brighter, flat-spectrum objects. 
    more » « less