skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 28, 2026

Title: Localizing Dynamically Formed Black Hole Binaries in Milky Way Globular Clusters with LISA
Abstract The dynamical formation of binary black holes (BBHs) in globular clusters (GCs) may contribute significantly to the observed gravitational-wave (GW) merger rate. Furthermore, the Laser Interferometer Space Antenna (LISA) may detect many BBH sources from GCs at mHz frequencies, enabling the characterization of such systems within the Milky Way and nearby Universe. In this work, we use Monte CarloN-body simulations to construct a realistic sample of Galactic clusters, thus estimating the population, detectability, and parameter measurement accuracy of BBHs hosted within them. In particular, we show that the GW signal from 0.7 ± 0.7, 2.0 ± 1.7, 3.6 ± 2.3, and 13.4 ± 4.7 BBHs in Milky Way GCs can exceed the signal-to-noise ratio (SNR) threshold of SNR = 30, 5, 3, and 1 for a 10 yr LISA observation, with ∼50% of detectable sources exhibiting high eccentricities (e ≳ 0.9). Moreover, the Fisher matrix and Bayesian analyses of the GW signals indicate that these systems typically feature highly resolved orbital frequencies (δforb/forb ∼ 10−7to 10−5) and eccentricities (δe/e ∼ 10−3to 0.1), as well as a measurable total mass when SNR exceeds ∼20. Notably, we show that high-SNR BBHs can be confidently localized to specific Milky Way GCs with a sky localization accuracy ofδΩ ∼ 1 deg2, and we address the large uncertainties in their distance measurement (δR ∼ 0.3–20 kpc). The detection and localization of even a single BBH in a Galactic GC would allow accurate tracking of its long-term orbital evolution, enable a direct test of the role of GCs in BBH formation, and provide a unique probe into the evolutionary history of Galactic clusters.  more » « less
Award ID(s):
2206428
PAR ID:
10646811
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Astrophysical Journal Letters
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
985
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the successful recovery of common-envelope ejection efficiency assumed in a simulated population of double white dwarf (DWD) binaries like those which may be observed by the future Laser Interferometer Space Antenna (LISA) mission. We simulate the formation of DWD binaries by using the COSMIC population synthesis code to sample binary formation conditions such as initial mass function, metallicity of star formation, initial orbital period, and initial eccentricity. These binaries are placed in the m12i synthetic Milky Way–like galaxy, and their signal-to-noise ratio (SNR) for the LISA instrument is estimated, considering a Galactic gravitational-wave foreground informed by the population. Through the use of Fisher estimates, we construct a likelihood function for the measurement error of the LISA-bright DWD binaries (≥20 SNR,fGW≥ 5 mHz), in their gravitational-wave frequency (fGW) and chirp mass. By repeating this process for different assumptions of the common-envelope ejection efficiency, we apply Bayesian hierarchical inference to find the best match to an injected astrophysical assumption for a fiducial population model. We conclude that the impact of common-envelope ejection efficiency on the mass-transfer processes involved in DWD formation may be statistically relevant in the future observed LISA population, and that constraints on binary formation may be found by comparing simulated populations to a future observed population. 
    more » « less
  2. Many gravitational wave (GW) sources in the LISA band are expected to have non-negligible eccentricity. Furthermore, many of them can undergo acceleration because they reside in the presence of a tertiary. Here we develop analytical and numerical methods to quantify how the compact binary's eccentricity enhances the detection of its peculiar acceleration. We show that the general relativistic precession pattern can disentangle the binary's acceleration-induced frequency shift from the chirp-mass-induced frequency shift in GW template fitting, thus relaxing the signal-to-noise ratio requirement for distinguishing the acceleration by a factor of 10 ∼100 . Moreover, by adopting the GW templates of the accelerating eccentric compact binaries, we can enhance the acceleration measurement accuracy by a factor of ∼100 , compared to the zero-eccentricity case, and detect the source's acceleration even if it does not change during the observational time. For example, a stellar-mass binary black hole (BBH) with moderate eccentricity in the LISA band yields an error of the acceleration measurement ∼10-7 m .s−2 for SNR =20 and observational time of 4 yr. In this example, we can measure the BBHs' peculiar acceleration even when it is ∼1 pc away from a 4 ×106M⊙ supermassive black hole. Our results highlight the importance of eccentricity to the LISA-band sources and show the necessity of developing GW templates for accelerating eccentric compact binaries. 
    more » « less
  3. ABSTRACT The motion of the centre of mass of a coalescing binary black hole (BBH) in a gravitational potential, imprints a line-of-sight acceleration (LOSA) on to the emitted gravitational-wave (GW) signal. The acceleration could be sufficiently large in dense stellar environments, such as globular clusters (GCs), to be detectable with next-generation space-based detectors. In this work, we use outputs of the cluster monte carlo (cmc) simulations of dense star clusters to forecast the distribution of detectable LOSAs in DECIGO and LISA eras. We study the effect of cluster properties – metallicity, virial and galactocentric radii – on the distribution of detectable accelerations, account for cosmologically motivated distributions of cluster formation times, masses, and metallicities, and also incorporate the delay time between the formation of BBHs and their merger in our analysis. We find that larger metallicities provide a larger fraction of detectable accelerations by virtue of a greater abundance of relatively lighter BBHs, which allow a higher number of GW cycles in the detectable frequency band. Conversely, smaller metallicities result in fewer detections, most of which come from relatively more massive BBHs with fewer cycles but larger LOSAs. We similarly find correlations between the virial radii of the clusters and the fractions of detectable accelerations. Our work, therefore, provides an important science case for space-based GW detectors in the context of probing GC properties via the detection of LOSAs of merging BBHs. 
    more » « less
  4. Abstract The existence of primordial black holes (PBHs), which may form from the collapse of matter overdensities shortly after the Big Bang, is still under debate. Among the potential signatures of PBHs are gravitational waves (GWs) emitted from binary black hole (BBH) mergers at redshiftsz≳ 30, where the formation of astrophysical black holes is unlikely. Future ground-based GW detectors, the Cosmic Explorer and Einstein Telescope, will be able to observe equal-mass BBH mergers with total mass of ( 10 100 ) M at such distances. In this work, we investigate whether the redshift measurement of a single BBH source can be precise enough to establish its primordial origin. We simulate BBHs of different masses, mass ratios and orbital orientations. We show that for BBHs with total masses between 20Mand 40Mmerging atz≥ 40, one can inferz> 30 at up to 97% credibility, with a network of one Einstein Telescope, one 40 km Cosmic Explorer in the US, and one 20 km Cosmic Explorer in Australia. This number reduces to 94% with a smaller network made of one Einstein Telescope and one 40 km Cosmic Explorer in the US. We also analyze how the measurement depends on the Bayesian priors used in the analysis and verify that priors that strongly favor the wrong model yield smaller Bayesian evidences. 
    more » « less
  5. Abstract GW231123, the most massive binary black hole (BBH) merger detected by LIGO–Virgo–KAGRA, highlights the need to understand the origins of massive, high-spin stellar black holes (BHs). Dense star clusters provide natural environments for forming such systems, beyond the limits of standard massive star evolution to core collapse. While repeated BBH mergers can grow BHs through dynamical interactions (the so-called “hierarchical merger” channel), most star clusters with masses ≲106Mhave escape speeds too low to retain higher-generation BHs, limiting growth into or beyond the mass gap. In contrast, BH–star collisions with subsequent accretion of the collision debris can grow and retain BHs irrespective of the cluster escape speed. UsingN-body (Cluster Monte Carlo) simulations, we study BH growth and spin evolution through this process, and we find that accretion can drive BH masses up to at least ∼200M, with spins set by the details of the growth history. BHs up to about 150Mcan reach dimensionless spinsχ ≳ 0.7 via single coherent episodes, while more massive BHs form through multiple stochastic accretion events and eventually spin down toχ ≲ 0.4. These BHs later form binaries through dynamical encounters, producing BBH mergers that contribute up to ∼10% of all detectable events, comparable to predictions for the hierarchical channel. However, the two pathways predict distinct signatures: hierarchical mergers yield more unequal mass ratios, whereas accretion-grown BHs preferentially form near-equal-mass binaries. The accretion-driven channel allows dense clusters with low escape speeds, such as globular clusters, to produce highly spinning BBHs with both components in or above the mass gap, providing a natural formation pathway to GW231123-like systems. 
    more » « less