skip to main content

Title: Biophysical drivers for predicting the distribution and abundance of invasive yellow sweet clover in the Northern Great Plains
Yellow sweetclover (Melilotus officinalis; YSC) is an invasive biennial legume that bloomed across the Northern Great Plains in 2018–2019 in response to above-average precipitation. YSC can increase nitrogen (N) levels and potentially cause substantial changes in the composition of native plant species communities. There is little knowledge of the spatiotemporal variability and conditions causing substantial widespread blooms of YSC across western South Dakota (SD). We aimed to develop a generalized prediction model to predict the relative abundance of YSC in suitable habitats across rangelands of western South Dakota for 2019. Our research questions are: (1) What is the spatial extent of YSC across western South Dakota? (2) Which model can accurately predict the habitat and percent cover of YSC? and (3) What significant biophysical drivers affect its presence across western South Dakota? We trained machine learning models with in situ data (2016–2021), Sentinel 2A-derived surface reflectance and indices (10 m, 20 m) and site-specific variables of climate, topography, and edaphic factors to optimize model performance. We identified moisture proxies (Shortwave Infrared reflectance and variability in Tasseled Cap Wetness) as the important predictors to explain the YSC presence. Land Surface Water Index and variability in summer temperature were the top predictors in explaining the YSC abundance. We demonstrated how machine learning algorithms could help generate valuable information on the spatial distribution of this invasive plant. We delineated major YSC hotspots in Butte, Pennington, and Corson Counties of South Dakota. The floodplains of major rivers, including White and Bad Rivers, and areas around Badlands National Park also showed a higher occurrence probability and cover percentage. These prediction maps could aid land managers in devising management strategies for the regions that are prone to YSC outbreaks. The management workflow can also serve as a prototype for mapping other invasive plant species in similar regions.  more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Journal Name:
Landscape ecology
Page Range / eLocation ID:
Subject(s) / Keyword(s):
["Abundance","Habitat suitability model","Ensemble model","Northern Great Plains","Sentinel 2","Plant invasion"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentataNutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: −6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: −47.9%, −41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.

    more » « less
  2. Abstract

    Drought monitoring and forecasting systems are used in the United States (U.S.) to inform drought management decisions. Drought forecasting efforts have often been conducted and evaluated at coarse spatial resolutions (i.e., >10‐km), which miss key local drought information at higher resolutions. Addressing the importance of forecasting drought at high resolutions, this study develops statistical models to evaluate 1‐ to 3‐month lead time predictability of meteorological and agricultural summer drought across the western U.S. at a 4‐km resolution. Our high‐resolution drought predictions have statistically significant skill (p ≤ 0.05) across 70%–100% of the western U.S., varying by evaluation metric and lead time. 1‐ to 3‐month lead time drought forecasts accurately represent monitored summer drought spatial patterns during major drought events, the interannual variability of drought area from 1982 to 2020 (r = 0.84–0.93), and drought trends (r = 0.94–0.97). 71% of western U.S summer drought area interannual variability can be explained by cold‐season (November–February) climate conditions alone allowing skillful 3‐month lead time predictions. Pre‐summer drought conditions (represented by drought indices) are the most important predictors for summer drought. Thus, the statistical models developed in this study heavily rely on the autocorrelation of chosen agricultural and meteorological drought indices which estimate land surface moisture memory. Indeed, prediction skill strongly correlates with persistence of drought conditions (r ≥ 0.73). This study is intended to support future development of operational drought early warning systems that inform drought management.

    more » « less
  3. Abstract Predicting the edges of species distributions is fundamental for species conservation, ecosystem services, and management decisions. In North America, the location of the upstream limit of fish in forested streams receives special attention, because fish-bearing portions of streams have more protections during forest management activities than fishless portions. We present a novel model development and evaluation framework, wherein we compare 26 models to predict upper distribution limits of trout in streams. The models used machine learning, logistic regression, and a sophisticated nested spatial cross-validation routine to evaluate predictive performance while accounting for spatial autocorrelation. The model resulting in the best predictive performance, termed UPstream Regional LiDAR Model for Extent of Trout (UPRLIMET), is a two-stage model that uses a logistic regression algorithm calibrated to observations of Coastal Cutthroat Trout ( Oncorhynchus clarkii clarkii ) occurrence and variables representing hydro-topographic characteristics of the landscape. We predict trout presence along reaches throughout a stream network, and include a stopping rule to identify a discrete upper limit point above which all stream reaches are classified as fishless. Although there is no simple explanation for the upper distribution limit identified in UPRLIMET, four factors, including upstream channel length above the point of uppermost fish, drainage area, slope, and elevation, had highest importance. Across our study region of western Oregon, we found that more of the fish-bearing network is on private lands than on state, US Bureau of Land Mangement (BLM), or USDA Forest Service (USFS) lands, highlighting the importance of using spatially consistent maps across a region and working across land ownerships. Our research underscores the value of using occurrence data to develop simple, but powerful, prediction tools to capture complex ecological processes that contribute to distribution limits of species. 
    more » « less
  4. Abstract

    Invasive species introduction is one of the major ongoing ecological global crises. Identifying factors responsible for the success of invasive species is key for the implementation of effective management actions. The invasive filter-feeding bivalve,Corbicula, is of particular interest because it has become ubiquitous in many river basins across North America and elsewhere. Here we sampled bivalve assemblages, environmental indicators, and land cover parameters in the Ouachita highlands in southeastern Oklahoma and southwestern Arkansas, and in the Gulf Coastal Plain of Alabama to test three working models (using structural equation modeling, SEM) based on a priori scientific knowledge regardingCorbiculainvasions. Our models tested three competing hypotheses: (1) Native mussel declines are related to land use changes at the watershed level and subsequentCorbiculacolonization is a result of an empty niche; (2)Corbiculaabundance is one of the factors responsible for native mussel declines and has an interactive effect with land use change at the watershed level; (3) Native mussel declines andCorbiculasuccess are both related to land use changes at the watershed level. We found no evidence for the first two hypotheses. However, we found that environmental indicators and land cover parameters at the watershed scale were robust predictors ofCorbiculaabundance. In particular, agricultural land cover was positively related withCorbiculadensity. These results suggest that further improvement of conventional agricultural practices including the optimization of fertilizer delivery systems may represent an opportunity to manage this species by limiting nutrient inputs to stream ecosystems. Preservation of extensive floodplain habitats may help buffer these inputs by providing key ecosystem services including sediment and nutrient retention.

    more » « less
  5. Abstract Questions

    How do plant communities on zonal loamy vs. sandy soils vary across the full maritime Arctic bioclimate gradient? How are plant communities of these areas related to existing vegetation units of the European Vegetation Classification? What are the main environmental factors controlling transitions of vegetation along the bioclimate gradient?


    1700‐km Eurasia Arctic Transect (EAT), Yamal Peninsula and Franz Josef Land (FJL), Russia.


    The Braun‐Blanquet approach was used to sample mesic loamy and sandy plots on 14 total study sites at six locations, one in each of the five Arctic bioclimate subzones and the forest–tundra transition. Trends in soil factors, cover of plant growth forms (PGFs) and species diversity were examined along the summer warmth index (SWI) gradient and on loamy and sandy soils. Classification and ordination were used to group the plots and to test relationships between vegetation and environmental factors.


    Clear, mostly non‐linear, trends occurred for soil factors, vegetation structure and species diversity along the climate gradient. Cluster analysis revealed seven groups with clear relationships to subzone and soil texture. Clusters at the ends of the bioclimate gradient (forest–tundra and polar desert) had many highly diagnostic taxa, whereas clusters from the Yamal Peninsula had only a few. Axis 1 of a DCA was strongly correlated with latitude and summer warmth; Axis 2 was strongly correlated with soil moisture, percentage sand and landscape age.


    Summer temperature and soil texture have clear effects on tundra canopy structure and species composition, with consequences for ecosystem properties. Each layer of the plant canopy has a distinct region of peak abundance along the bioclimate gradient. The major vegetation types are weakly aligned with described classes of the European Vegetation Checklist, indicating a continuous floristic gradient rather than distinct subzone regions. The study provides ground‐based vegetation data for satellite‐based interpretations of the western maritime Eurasian Arctic, and the first vegetation data from Hayes Island, Franz Josef Land, which is strongly separated geographically and floristically from the rest of the gradient and most susceptible to on‐going climate change.

    more » « less