skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shifts in competitive structures can drive variation in species' phenology
Abstract For many species, a well documented response to anthropogenic climate change is a shift in various aspects of its life history, including its timing or phenology. Often, these phenological shifts are associated with changes in abiotic factors used as proxies for resource availability or other suitable conditions. Resource availability, however, can also be impacted by competition, but the impact of competition on phenology is less studied than abiotic drivers. We fit generalized additive models (GAMs) to a long‐term experimental dataset on small mammals monitored in the southwestern United States and show that altered competitive landscapes can drive shifts in breeding timing and prevalence, and that, relative to a dominant competitor, other species exhibit less specific responses to environmental factors. These results suggest that plasticity of phenological responses, which is often described in the context of annual variation in abiotic factors, can occur in response to biotic context as well. Variation in phenological responses under different biotic conditions shown here further demonstrates that a more nuanced understanding of shifting biotic interactions is useful to better understand and predict biodiversity patterns in a changing world.  more » « less
Award ID(s):
1929730
PAR ID:
10472169
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
104
Issue:
11
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science. 
    more » « less
  2. Abstract Species with different life histories and communities that vary in their seasonal constraints tend to shift their phenology (seasonal timing) differentially in response to climate warming.We investigate how these variable phenological shifts aggregate to influence phenological overlap within communities. Phenological advancements of later season species and extended durations of early season species may increase phenological overlap, with implications for species' interactions such as resource competition.We leverage extensive historic (1958–1960) and recent (2006–2015) weekly survey data for communities of grasshoppers along a montane elevation gradient to assess the impact of climate on shifts in the phenology and abundance distributions of species. We then examine how these responses are influenced by the seasonal timing of species and elevation, and how in aggregate they influence degrees of phenological overlap within communities.In warmer years, abundance distributions shift earlier in the season and become broader. Total abundance responds variably among species and we do not detect a significant response across species. Shifts in abundance distributions are not strongly shaped by species' seasonal timing or sites of variable elevations. The area of phenological overlap increases in warmer years due to shifts in the relative seasonal timing of compared species. Species that overwinter as nymphs increasingly overlap with later season species that advance their phenology. The days of phenological overlap also increase in warm years but the response varies across sites of variable elevation. Our phenological overlap metric based on comparing single events—the dates of peak abundance—does not shift significantly with warming.Phenological shifts are more complex than shifts in single dates such as first occurrence. As abundance distributions shift earlier and become broader in warm years, phenological overlap increases. Our analysis suggests that overall grasshopper abundance is relatively robust to climate and associated phenological shifts but we find that increased overlap can decrease abundance, potentially by strengthening species interactions such as resource competition. 
    more » « less
  3. Abstract Advancing spring phenology is a well documented consequence of anthropogenic climate change, but it is not well understood how climate change will affect the variability of phenology year to year. Species' phenological timings reflect the adaptation to a broad suite of abiotic needs (e.g., thermal energy) and biotic interactions (e.g., predation and pollination), and changes in patterns of variability may disrupt those adaptations and interactions. Here, we present a geographically and taxonomically broad analysis of phenological shifts, temperature sensitivity, and changes in interannual variability encompassing nearly 10,000 long‐term phenology time series representing more than 1000 species across much of the Northern Hemisphere. We show that the timings of leaf‐out, flowering, insect first‐occurrence, and bird arrival were the most sensitive to temperature variation and have advanced at the fastest pace for early‐season species in colder and less seasonal regions. We did not find evidence for changing variability in warmer years in any phenophase groups, although leaf‐out and flower phenology have become moderately but significantly less variable over time. Our findings suggest that climate change has not to this point fundamentally altered the patterns of interannual phenological variability. 
    more » « less
  4. Phenological shifts have been observed among marine species due to climate change. Modeling changes in fish spawning aggregations (FSAs) under climate change can be useful for adaptive management, because it can allow managers to adjust conservation strategies in the context of specific life history and phenological responses. We modeled effects of climate change on the distribution and phenology of Caribbean FSAs, examining 4 snapper and 4 grouper species. An ecological niche model was used to link FSAs with environmental conditions from remote sensing and project FSA distribution and seasonality under RCP8.5. We found significant differences between groupers and snappers in response to warming. While there was variation among species, groupers experienced slight delays in spawning season, a greater loss of suitable ocean habitat (average loss: 72.75%), and poleward shifts in FSA distribution. Snappers had larger shifts towards earlier phenology, with a smaller loss of suitable ocean habitat (average loss: 24.25%), excluding gray snapper, which gained habitat. Snappers exhibited interspecific variability in latitudinal distribution shifts. Snapper FSAs appeared more resilient to climate change and occupy wider and warmer spawning temperature ranges, while groupers prefer cooler spawning seasons. Consequently, groupers may lose more suitable ocean spawning habitat sooner due to climate change. When comparing species, there were trade-offs among climate change responses in terms of distribution shifts, phenology changes, and declines in habitat suitability. Understanding such trade-offs can help managers prioritize marine protected area locations and determine the optimal timing of seasonal fishing restrictions to protect FSAs vulnerable to fishing pressure in a changing climate. 
    more » « less
  5. Abstract Abiotic and biotic factors interact to influence phenotypic evolution; however, identifying the causal agents of selection that drive the evolution and expression of traits remains challenging. In a field common garden, we manipulated water availability and herbivore abundance across 3 years, and evaluated clinal variation in functional traits and phenology, phenotypic plasticity, local adaptation, and selection using diverse accessions of the perennial forb, Boechera stricta. Consistent with expectations, drought stress exacerbated damage from herbivores. We found significant plasticity and genetic clines in foliar and phenological traits. Water availability and herbivory interacted to exert selection, even on traits like flowering duration, which showed no clinal variation. Furthermore, the direction of selection on specific leaf area in response to water availability mirrored the genetic cline and plasticity, suggesting that variation in water levels across the landscape influences the evolution of this trait. Finally, both herbivory and water availability likely contribute to local adaptation. This work emphasizes the additive and synergistic roles of abiotic and biotic factors in shaping phenotypic variation across environmental gradients. 
    more » « less