Abstract BackgroundSea urchin embryos have been used for more than a century in the study of fertilization and early development. However, several of the species used, such asStrongylocentrotus purpuratus, have long generation times making them suboptimal for transgenerational studies. ResultsHere, we present an overview of the development of a rapidly developing echinoderm species,Lytechinus pictus, from fertilization through sexual maturation. When grown at room temperature (20°C) embryos complete the first cell cycle in 90 minutes, followed by subsequent cleavages every 45 minutes, leading to hatching at 9 hours postfertilization (hpf). The swimming embryos gastrulate from 12 to 36 hpf and produce the cells which subsequently give rise to the larval skeleton and immunocytes. Larvae begin to feed at 2 days and metamorphose by 3 weeks. Juveniles reach sexual maturity at 4 to 6 months of age, depending on individual growth rate. ConclusionsThis staging scheme lays a foundation for future studies inL. pictus, which share many of the attractive features of other urchins but have the key advantage of rapid development to sexual maturation. This is significant for multigenerational and genetic studies newly enabled by CRISPR‐CAS mediated gene editing.
more »
« less
Future research directions of the model marine tubeworm Hydroides elegans and synthesis of developmental staging of the complete life cycle
Abstract BackgroundThe biofouling marine tube worm,Hydroides elegans, is an indirect developing polychaete with significance as a model organism for questions in developmental biology and the evolution of host‐microbe interactions. However, a complete description of the life cycle from fertilization through sexual maturity remains scattered in the literature, and lacks standardization. Results and discussionHere, we present a unified staging scheme synthesizing the major morphological changes that occur during the entire life cycle of the animal. These data represent a complete record of the life cycle, and serve as a foundation for connecting molecular changes with morphology. ConclusionsThe present synthesis and associated staging scheme are especially timely as this system gains traction within research communities. Characterizing theHydroideslife cycle is essential for investigating the molecular mechanisms that drive major developmental transitions, like metamorphosis, in response to bacteria.
more »
« less
- Award ID(s):
- 1942251
- PAR ID:
- 10472213
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Developmental Dynamics
- Volume:
- 252
- Issue:
- 11
- ISSN:
- 1058-8388
- Format(s):
- Medium: X Size: p. 1391-1400
- Size(s):
- p. 1391-1400
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PurposeThe veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo‐devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking. MethodsTo address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated. ResultsWe then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins. ConclusionWe present this de novo, annotated, multi‐tissue transcriptome assembly for the Veiled Chameleon,Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively.more » « less
-
Abstract BackgroundOne goal of evolutionary developmental biology is to understand the role of development in the origin of phenotypic novelty and convergent evolution. Geckos are an ideal system to study this topic, as they are species‐rich and exhibit a suite of diverse morphologies—many of which have independently evolved multiple times within geckos. ResultsWe characterized and discretized the embryonic development ofLepidodactylus lugubris—an all‐female, parthenogenetic gecko species. We also used soft‐tissue μCT to characterize the development of the brain and central nervous system, which is difficult to visualize using traditional microscopy techniques. Additionally, we sequenced and assembled a de novo transcriptome for a late‐stage embryo as a resource for generating future developmental tools. Herein, we describe the derived and conserved patterns ofL. lugubrisdevelopment in the context of squamate evolution and development. ConclusionsThis embryonic staging series, μCT data, and transcriptome together serve as critical enabling resources to study morphological evolution and development, the evolution and development of parthenogenesis, and other questions concerning vertebrate evolution and development in an emerging gecko model.more » « less
-
Abstract BackgroundThe comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman)Phalangium opilio, a member of the order Opiliones.Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. ResultsWe present a staging system ofP. opilioembryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. ConclusionConsidering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference forP.opiliothat we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.more » « less
-
Ciliates are a model lineage for studies of genome architecture given their unusual genome structures. All ciliates have both somatic macronuclei (MAC) and germline micronuclei (MIC), both of which develop from a zygotic nucleus following sex (i.e., conjugation). Nuclear developmental stages are not well documented among non-model ciliates, includingChilodonella uncinata(class Phyllopharyngea), the focus of our work. Here, we characterize nuclear architecture and genome dynamics inC. uncinataby combining 4′,6-diamidino-2-phenylindole (DAPI) staining and fluorescencein situhybridization (FISH) techniques with confocal microscopy. We developed a telomere probe for staining, which alongside DAPI allows for the identification of fragmented somatic chromosomes among the total DNA in the nuclei. We quantify both total DNA and telomere-bound signals from more than 250 nuclei sampled from 116 individual cells, and analyze changes in DNA content and nuclear architecture acrossChilodonella’s nuclear life cycle. Specifically, we find that MAC developmental stages in the ciliateC. uncinataare different from those reported from other ciliate species. These data provide insights into nuclear dynamics during development and enrich our understanding of genome evolution in non-model ciliates. IMPORTANCECiliates are a clade of diverse single-celled eukaryotic microorganisms that contain at least one somatic macronucleus (MAC) and germline micronucleus (MIC) within each cell/organism. Ciliates rely on complex genome rearrangements to generate somatic genomes from a zygotic nucleus. However, the development of somatic nuclei has only been documented for a few model ciliate genera, includingParamecium,Tetrahymena, andOxytricha. Here, we study the MAC developmental process in the non-model ciliate,C. uncinata. We analyze both total DNA and the generation of gene-sized somatic chromosomes using a laser scanning confocal microscope to describeC. uncinata’s nuclear life cycle. We show that DNA content changes dramatically during their life cycle and in a manner that differs from previous studies on model ciliates. Our study expands knowledge of genome dynamics in ciliates and among eukaryotes more broadly.more » « less
An official website of the United States government
