Abstract The wind-driven exchange through complex ridges and islands between marginal seas and the open ocean is studied using both numerical and analytical models. The models are forced by a steady, spatially uniform northward wind stress intended to represent the large-scale, low-frequency wind patterns typical of the seasonal monsoons in the western Pacific Ocean. There is an eastward surface Ekman transport out of the marginal sea and westward geostrophic inflows into the marginal sea. The interaction between the Ekman transport and an island chain produces strong baroclinic flows along the island boundaries with a vertical depth that scales with the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. The throughflows in the gaps are characterized by maximum transport in the center gap and decreasing transports toward the southern and northern tips of the island chain. An extended island rule theory demonstrates that throughflows are determined by the collective balance between viscosity on the meridional boundaries and the eastern side boundary of the islands. The outflowing transport is balanced primarily by a shallow current that enters the marginal sea along its equatorward boundary. The islands can block some direct exchange and result in a wind-driven overturning cell within the marginal sea, but this is compensated for by eastward zonal jets around the southern and northern tips of the island chain. Topography in the form of a deep slope, a ridge, or shallow shelves around the islands alters the current pathways but ultimately is unable to limit the total wind-driven exchange between the marginal sea and the open ocean. 
                        more » 
                        « less   
                    
                            
                            A Three-Dimensional Inertial Model for Coastal Upwelling along Western Boundaries
                        
                    
    
            Abstract A three-dimensional inertial model that conserves quasigeostrophic potential vorticity is proposed for wind-driven coastal upwelling along western boundaries. The dominant response to upwelling favorable winds is a surface-intensified baroclinic meridional boundary current with a subsurface countercurrent. The width of the current is not the baroclinic deformation radius but instead scales with the inertial boundary layer thickness while the depth scales as the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. Thus, the boundary current scales depend on the stratification, wind stress, Coriolis parameter, and its meridional variation. In contrast to two-dimensional wind-driven coastal upwelling, the source waters that feed the Ekman upwelling are provided over the depth scale of this baroclinic current through a combination of onshore barotropic flow and from alongshore in the narrow boundary current. Topography forces an additional current whose characteristics depend on the topographic slope and width. For topography wider than the inertial boundary layer thickness the current is bottom intensified, while for narrow topography the current is wave-like in the vertical and trapped over the topography within the inertial boundary layer. An idealized primitive equation numerical model produces a similar baroclinic boundary current whose vertical length scale agrees with the theoretical scaling for both upwelling and downwelling favorable winds. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1922538
- PAR ID:
- 10472255
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 52
- Issue:
- 10
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- 2431 to 2444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The vertical structure of ocean eddies is generally surface-intensified, commonly attributed to the dominant baroclinic modes arising from the boundary conditions (BCs). Conventional BC considerations mostly focus on either flat- or rough-bottom conditions. The impact of surface buoyancy anomalies—often represented by surface potential vorticity (PV) anomalies—has not been fully explored. Here, we study the role of the surface PV in setting the vertical distribution of eddy kinetic energy (EKE) in an idealized adiabatic ocean model driven by wind stress. The simulated EKE profile in the extratropical ocean tends to peak at the surface and have ane-folding depth typically smaller than half of the ocean depth. This vertical structure can be reasonably represented by a single surface quasigeostrophic (SQG) mode at the energy-containing scale resulting from the large-scale PV structure. Due to isopycnal outcropping and interior PV homogenization, the surface meridional PV gradient is substantially stronger than the interior PV gradient, yielding surface-trapped baroclinically unstable modes with horizontal scales comparable to or smaller than the deformation radius. These surface-trapped eddies then grow in size both horizontally and vertically through an inverse energy cascade up to the energy-containing scale, which dominates the vertical distribution of EKE. As for smaller horizontal scales, the EKE distribution decays faster with depth. Guided by this interpretation, an SQG-based scale-aware parameterization of the EKE profile is proposed. Preliminary offline diagnosis of a high-resolution simulation shows the proposed scheme successfully reproducing the dependence of the vertical structure of EKE on the horizontal grid resolution.more » « less
- 
            Wind directly forces inertial oscillations in the mixed layer. Where these currents hit the coast, the no-normal-flow boundary condition leads to vertical velocities that pump both the base of the mixed layer and the free surface, producing offshore-propagating near-inertial internal and surface waves, respectively. The internal waves directly transport wind work downward into the ocean’s stratified interior, where it may provide mechanical mixing. The surface waves propagate offshore where they can scatter over rough topography in a process analogous to internal-tide generation. Here, we estimate mixed layer currents from observed winds using a damped slab model. Then, we estimate the pressure, velocity, and energy flux associated with coastally generated near-inertial waves at a vertical coastline. These results are extended to coasts with arbitrary across-shore topography and examined using numerical simulations. At the New Jersey shelfbreak, comparisons between the slab model, numerical simulations, and moored observations are ambiguous. Extrapolation of the theoretical results suggests that [Formula: see text](10%) of global wind work (i.e., 0.03 of 0.31 TW) is transferred to coastally generated barotropic near-inertial waves.more » « less
- 
            Abstract Theoretical understanding of the upward vertical motion into the surface layer during coastal upwelling is often based on steady linear Ekman dynamics. In steady linear theory, the divergence of surface transport that leads to upwelling is associated with either overlap of the frictional boundary layers over the inner shelf or wind stress curl farther offshore. However, the alongshore current associated with a coastal upwelling front is associated with relative vorticity which modifies surface transport. A new nonlinear theory shows that, under spatially uniform wind forcing, the fraction of Ekman transport upwelled over the inner shelf tends to decrease with increasing slope Burger numberSas the baroclinic alongshore jet strengthens and cyclonic vorticity increases. Similar patterns are shown in a set of idealized numerical experiments. Unsteadiness in the alongshore flow, neglected in the theory, strongly influences the cross-shelf distribution of upwelling in the numerical model at locations offshore of the inner shelf and near the core of the upwelling jet. The theory and numerical modeling are extended to explore the effect of a large-scale alongshore pressure gradient force (PGF) that forms in response to alongshore variations in wind stress. At highS, a baroclinic PGF is associated with a shallow onshore return flow, but the fraction of modeled upwelling that occurs over the inner shelf is not strongly affected. The results emphasize that the strength and location of the alongshore jet strongly influence the cross-shelf distribution of coastal upwelling in the presence of stratification and a sloping bottom. Significance StatementWind-driven coastal upwelling is important for supplying nutrients to phytoplankton at the base of marine ecosystems. This study uses simple models to investigate factors that determine where upwelling of water into the surface layer occurs when wind blows along the coastline. With a larger difference in density between the surface and bottom layers, a steeply sloping seafloor, and at latitudes closer to the equator, the upwelling region shifts farther offshore because of the strength and location of faster ocean currents that flow along the coastline.more » « less
- 
            In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    