skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2128039

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The think-aloud protocol provides researchers an insight into the designer's mental state, but little is understood about how thinking aloud influences design. The study presented in this paper sets out to measure the cognitive and neurocognitive changes in designers when thinking aloud. Engineering students (n=50) were randomly assigned to the think-aloud or control group. Students were outfitted with a functional near-infrared spectroscopy band. Students were asked to design a personal entertainment system. The think-aloud group spent significantly less time designing. Their design sketches included significantly fewer words. The think-aloud group also required significantly more resources in the left and right dorsolateral prefrontal cortex (DLPFC). The left DLPFC is often recruited for language processing, and the right DLPFC is involved in visual representation and problem-solving. The faster depletion of neurocognitive resources may have contributed to less time designing. Thinking aloud influences design cognition and neurocognition, but these effects are only now becoming apparent. More research and the adoption of neuroscience techniques can help shed light on these differences.

     
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  2. This research paper examines the patterns of inter-brain synchrony among engineering student teams and the relationship between inter-brain synchrony and team cooperation and performance. A pilot study was conducted with eight two-person teams of fourth-year undergraduate civil engineering students. Three collaborative design and build tasks were assigned to each team. Two independent raters carried out the behavioral analysis, scoring team cooperation. Each team member wore a functional near-infrared spectroscopy (fNIRS) device to measure inter-brain synchrony during the tasks. The results showed that inter-brain synchrony occurred during the team task, but the patterns varied between groups and tasks. Elevated levels of inter-brain synchrony were observed in the left ventrolateral prefrontal cortex (VLPFC) and left dorsolateral prefrontal cortex (DLPFC). The left VLPFC and left DLPFC are often associated with cognitive processes such as problem-solving, working memory, decision-making, and coordinated verbal exchange. Inter-brain synchrony was positively correlated with task performance and cooperation when teams were asked to design and build a structure given limited time and money but negatively correlated with cooperation and performance on other more open-ended design sketching tasks. The study’s findings suggest that inter-brain synchrony exists when engineering students work together as a team, but the results are inconsistent between task types. Inter-brain synchrony could be a useful metric for measuring team cooperation and performance, particularly in tasks that require coordinated verbal exchange, problemsolving, and decision-making. However, the study’s small sample size limits the generalizability of the results. Future studies with a larger sample size and more diverse groups of engineers are needed to validate the findings and explore their implications further. 
    more » « less
    Free, publicly-accessible full text available June 20, 2024
  3. Ideation is a key phase in engineering design and brainstorming is an established method for ideation. A limitation of the brainstorming process is idea production tends to peak at the beginning and quickly decreases with time. In this exploratory study, we tested an innovative technique to sustain ideation by providing designers feedback about their neurocognition. We used a neuroimaging technique (fNIRS) to monitor students’ neurocognitive activations during a brainstorming task. Half received real-time feedback about their neurocognitive activation in their prefrontal cortex, a brain region associated with working memory and cognitive flexibility. Students who received the neurocognitive feedback maintained higher cortical activation and longer sustained peak activation. Students receiving the neurocognitive feedback demonstrated a higher percentage of right-hemispheric dominance, a region associated to creative processing, compared to the students without neurocognitive feedback. The increase in right-hemispheric dominance positively correlated with an increase in the number of solutions during concept generation and a higher design idea fluency. These results demonstrate the prospective use of neurocognitive feedback to sustain the cognitive activations necessary for idea generation during brainstorming. Future research should explore the effect of neurocognitive feedback with a more robust sample of designers and compare neurocognitive feedback with other types of interventions to sustain ideation. 
    more » « less