skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1
Abstract Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming.  more » « less
Award ID(s):
1931697
PAR ID:
10472317
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Rando, O
Publisher / Repository:
Genetics
Date Published:
Journal Name:
Genetics
Volume:
223
Issue:
3
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Formation of a zygote is coupled with extensive epigenetic reprogramming to enable appropriate inheritance of histone methylation and prevent developmental delays. In Caenorhabditis elegans, this reprogramming is mediated by the H3K4me2 demethylase SPR-5 and the H3K9 methyltransferase, MET-2. In contrast, the H3K36 methyltransferase MES-4 maintains H3K36me2/3 at germline genes between generations to facilitate re-establishment of the germline. To determine whether the MES-4 germline inheritance pathway antagonizes spr-5; met-2 reprogramming, we examined the interaction between these two pathways. We found that the developmental delay of spr-5; met-2 mutant progeny is associated with ectopic H3K36me3 and the ectopic expression of MES-4-targeted germline genes in somatic tissues. Furthermore, the developmental delay is dependent upon MES-4 and the H3K4 methyltransferase, SET-2. We propose that MES-4 prevents crucial germline genes from being repressed by antagonizing maternal spr-5; met-2 reprogramming. Thus, the balance of inherited histone modifications is necessary to distinguish germline versus soma and prevent developmental delay. This article has an associated ‘The people behind the papers’ interview. 
    more » « less
  2. Somatic cell nuclear transfer has established that the oocyte contains maternal factors with epigenetic reprogramming capacity. Yet the identity and function of these maternal factors during the gamete to embryo transition remains poorly understood. In C. elegans, LSD1/KDM1A enables this transition by removing H3K4me2 and preventing the transgenerational inheritance of transcription patterns. Here we show that loss of maternal LSD1/KDM1A in mice results in embryonic arrest at the 1-2 cell stage, with arrested embryos failing to undergo the maternal-to-zygotic transition. This suggests that LSD1/KDM1A maternal reprogramming is conserved. Moreover, partial loss of maternal LSD1/KDM1A results in striking phenotypes weeks after fertilization; including perinatal lethality and abnormal behavior in surviving adults. These maternal effect hypomorphic phenotypes are associated with alterations in DNA methylation and expression at imprinted genes. These results establish a novel mammalian paradigm where defects in early epigenetic reprogramming can lead to defects that manifest later in development. 
    more » « less
  3. In Caenorhabditis elegans, mutations in WDR-5 and other components of the COMPASS H3K4 methyltransferase complex extend lifespan and enable its inheritance. Here, we show that wdr-5 mutant longevity is itself a transgenerational trait that corresponds with a global enrichment of the heterochromatin factor H3K9me2 over twenty generations. In addition, we find that the transgenerational aspects of wdr-5 mutant longevity require the H3K9me2 methyltransferase MET-2, and can be recapitulated by removal of the putative H3K9me2 demethylase JHDM-1. Finally, we show that the transgenerational acquisition of longevity in jhdm-1 mutants is associated with accumulating genomic H3K9me2 that is inherited by their long-lived wild-type descendants at a subset of loci. These results suggest that heterochromatin facilitates the transgenerational establishment and inheritance of a complex trait. Based on these results, we propose that transcription-coupled H3K4me via COMPASS limits lifespan by encroaching upon domains of heterochromatin in the genome. 
    more » « less
  4. Abstract In adverse environments, the number of fertilizable female gametophytes (FGs) in plants is reduced, leading to increased survival of the remaining offspring. How the maternal plant perceives internal growth cues and external stress conditions to alter FG development remains largely unknown. We report that homeostasis of the stress signaling molecule nitric oxide (NO) plays a key role in controlling FG development under both optimal and stress conditions. NO homeostasis is precisely regulated by S-nitrosoglutathione reductase (GSNOR). Prior to fertilization, GSNOR protein is exclusively accumulated in sporophytic tissues and indirectly controls FG development in Arabidopsis (Arabidopsis thaliana). In GSNOR null mutants, NO species accumulated in the degenerating sporophytic nucellus, and auxin efflux into the developing FG was restricted, which inhibited FG development, resulting in reduced fertility. Importantly, restoring GSNOR expression in maternal, but not gametophytic tissues, or increasing auxin efflux substrate significantly increased the proportion of normal FGs and fertility. Furthermore, GSNOR overexpression or added auxin efflux substrate increased fertility under drought and salt stress. These data indicate that NO homeostasis is critical to normal auxin transport and maternal control of FG development, which in turn determine seed yield. Understanding this aspect of fertility control could contribute to mediating yield loss under adverse conditions. 
    more » « less
  5. Abstract Deficiency for telomerase results in transgenerational shortening of telomeres. However, telomeres have no known role in transgenerational epigenetic inheritance.C. elegansProtection Of Telomeres 1 (Pot1) proteins form foci at the telomeres of germ cells that disappear at fertilization and gradually accumulate during development. We find that gametes from mutants deficient for Pot1 proteins alter levels of telomeric foci for multiple generations. Gametes frompot-2mutants give rise to progeny with abundant POT-1::mCherry and mNeonGreen::POT-2 foci throughout development, which persists for six generations. In contrast, gametes frompot-1mutants orpot-1;pot-2double mutants induce diminished Pot1 foci for several generations. Deficiency for MET-2, SET-25, or SET-32 methyltransferases, which promote heterochromatin formation, results in gametes that induce diminished Pot1 foci for several generations. We propose thatC. elegansPOT-1 may interact with H3K9 methyltransferases duringpot-2mutant gametogenesis to induce a persistent form of transgenerational epigenetic inheritance that causes constitutively high levels of heterochromatic Pot1 foci. 
    more » « less