skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1931697

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rando, O (Ed.)
    Abstract Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming. 
    more » « less
  2. ABSTRACT Formation of a zygote is coupled with extensive epigenetic reprogramming to enable appropriate inheritance of histone methylation and prevent developmental delays. In Caenorhabditis elegans, this reprogramming is mediated by the H3K4me2 demethylase SPR-5 and the H3K9 methyltransferase, MET-2. In contrast, the H3K36 methyltransferase MES-4 maintains H3K36me2/3 at germline genes between generations to facilitate re-establishment of the germline. To determine whether the MES-4 germline inheritance pathway antagonizes spr-5; met-2 reprogramming, we examined the interaction between these two pathways. We found that the developmental delay of spr-5; met-2 mutant progeny is associated with ectopic H3K36me3 and the ectopic expression of MES-4-targeted germline genes in somatic tissues. Furthermore, the developmental delay is dependent upon MES-4 and the H3K4 methyltransferase, SET-2. We propose that MES-4 prevents crucial germline genes from being repressed by antagonizing maternal spr-5; met-2 reprogramming. Thus, the balance of inherited histone modifications is necessary to distinguish germline versus soma and prevent developmental delay. This article has an associated ‘The people behind the papers’ interview. 
    more » « less
  3. Abstract Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of origin. Their regulation not only illuminates how chromatin regulates gene expression but also how chromatin can be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis of imprinted loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess these elements allele specifically. However, publicly available SNP databases lack robust verification, making analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been developed employ different mouse strains, making it difficult to systemically analyze these loci. Here, we have generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single hybrid strain of Mus musculus. This resource includes verification of SNPs present within 10 of the most widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a C57BL/6J and CAST/EiJ hybrid strain background. 
    more » « less
  4. Abstract Transvection—a phenomenon in which the allele on one chromosome genetically interacts with its paired allele on the homologous chromo-some..... Transvection is broadly defined as the ability of one locus to affect its homologous locus in trans. Although it was first discovered in the 1950s, there are only two known cases in mammals. Here, we report another instance of mammalian transvection induced by the Cre/LoxP system, which is widely used for conditional gene targeting in the mouse. We attempted to use the germline-expressed Vasa-Cre transgene to engineer a mouse mutation, but observe a dramatic reduction of LoxP recombination in mice that inherit an already deleted LoxP allele in trans. A similar phenomenon has previously been observed with another Cre that is expressed during meiosis: Sycp-1-Cre. This second example of LoxP inhibition in trans reinforces the conclusion that certain meiotically expressed Cre alleles can initiate transvection in mammals. However, unlike the previous example, we find that the inhibition of LoxP recombination is not due to DNA methylation. In addition, we demonstrate that LoxP inhibition is easily alleviated by adding an extra generation to our crossing scheme. This finding confirms that the LoxP sites are inhibited via an epigenetic mechanism, and provides a method for the use of other Cre transgenes associated with a similar LoxP inhibition event. Furthermore, the abrogation of LoxP inhibition by the simple addition of an extra generation in our crosses establishes a unique mouse system for future studies to uncover the mechanism of transvection in mammals. 
    more » « less
  5. In Caenorhabditis elegans, mutations in WDR-5 and other components of the COMPASS H3K4 methyltransferase complex extend lifespan and enable its inheritance. Here, we show that wdr-5 mutant longevity is itself a transgenerational trait that corresponds with a global enrichment of the heterochromatin factor H3K9me2 over twenty generations. In addition, we find that the transgenerational aspects of wdr-5 mutant longevity require the H3K9me2 methyltransferase MET-2, and can be recapitulated by removal of the putative H3K9me2 demethylase JHDM-1. Finally, we show that the transgenerational acquisition of longevity in jhdm-1 mutants is associated with accumulating genomic H3K9me2 that is inherited by their long-lived wild-type descendants at a subset of loci. These results suggest that heterochromatin facilitates the transgenerational establishment and inheritance of a complex trait. Based on these results, we propose that transcription-coupled H3K4me via COMPASS limits lifespan by encroaching upon domains of heterochromatin in the genome. 
    more » « less
  6. Schlatt, Stefan (Ed.)
  7. Somatic cell nuclear transfer has established that the oocyte contains maternal factors with epigenetic reprogramming capacity. Yet the identity and function of these maternal factors during the gamete to embryo transition remains poorly understood. In C. elegans, LSD1/KDM1A enables this transition by removing H3K4me2 and preventing the transgenerational inheritance of transcription patterns. Here we show that loss of maternal LSD1/KDM1A in mice results in embryonic arrest at the 1-2 cell stage, with arrested embryos failing to undergo the maternal-to-zygotic transition. This suggests that LSD1/KDM1A maternal reprogramming is conserved. Moreover, partial loss of maternal LSD1/KDM1A results in striking phenotypes weeks after fertilization; including perinatal lethality and abnormal behavior in surviving adults. These maternal effect hypomorphic phenotypes are associated with alterations in DNA methylation and expression at imprinted genes. These results establish a novel mammalian paradigm where defects in early epigenetic reprogramming can lead to defects that manifest later in development. 
    more » « less