skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative Analysis of Core Microbiome Assignments: Implications for Ecological Synthesis
Different methods are commonly used to assign core microbiome membership, leading to methodological inconsistencies across studies. In this study, we review a set of the most commonly used core microbiome assignment methods and compare their core assignments using both simulated and empirical data.  more » « less
Award ID(s):
1655726
PAR ID:
10472366
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Shade, Ashley
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mSystems
Volume:
8
Issue:
1
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Segata, Nicola (Ed.)
    The ability to predict human phenotypes and identify biomarkers of disease from metagenomic data is crucial for the development of therapeutics for microbiome-associated diseases. However, metagenomic data is commonly affected by technical variables unrelated to the phenotype of interest, such as sequencing protocol, which can make it difficult to predict phenotype and find biomarkers of disease. Supervised methods to correct for background noise, originally designed for gene expression and RNA-seq data, are commonly applied to microbiome data but may be limited because they cannot account for unmeasured sources of variation. Unsupervised approaches address this issue, but current methods are limited because they are ill-equipped to deal with the unique aspects of microbiome data, which is compositional, highly skewed, and sparse. We perform a comparative analysis of the ability of different denoising transformations in combination with supervised correction methods as well as an unsupervised principal component correction approach that is presently used in other domains but has not been applied to microbiome data to date. We find that the unsupervised principal component correction approach has comparable ability in reducing false discovery of biomarkers as the supervised approaches, with the added benefit of not needing to know the sources of variation apriori. However, in prediction tasks, it appears to only improve prediction when technical variables contribute to the majority of variance in the data. As new and larger metagenomic datasets become increasingly available, background noise correction will become essential for generating reproducible microbiome analyses. 
    more » « less
  2. The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host–microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions.Caenorhabditis eleganshas been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions ofC. eleganswith its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host–microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions,C. eleganshas emerged as a promising system to generate and test new hypotheses regarding host–microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue ‘Sculpting the microbiome: how host factors determine and respond to microbial colonization’. 
    more » « less
  3. Abstract The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or the field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, many more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities is associated with variability in host–microbiome interactions and further demonstrate the utility of the microbiome transplantation technique for investigating host–microbe interactions in mosquitoes. 
    more » « less
  4. Abstract Freshwater mussels are important for nutrient cycling and ecosystem health as they filter feed on their surrounding water. This filter feeding makes these bivalves especially sensitive to conditions in their environment. Gut microbial communities (microbiomes) have been recognised as important to both host organism and ecosystem health; however, how freshwater mussel microbiomes are organised and influenced is unclear.In this study, the gut bacterial microbiome of Threeridge mussel,Amblema plicata, was compared across two river basins, five rivers, and nine local sites in the south‐eastern U.S.A. Mussel gut tissue was dissected, DNA extracted, and the microbiome characterised by high throughput sequencing of the V4 region of the 16S ribosomal RNA gene.Planctomycetes, Firmicutes, and Cyanobacteria were the most common bacterial phyla within the guts of all sampledA.plicata. However, the relative abundances of these major bacterial phyla differed between mussels sampled from different rivers and river basins, as did the relative abundance of specific bacterial operational taxonomic units (OTUs). Despite these differences, a core microbiome was identified across all mussels, with eight OTUs being consistent members of theA.plicatamicrobiome at all sites, the most abundant OTU identifying as a member of the family Planctomycetaceae. Geographic distance between sites was not correlated with similarity in the structure of the gut microbiome, which was more related to site physicochemistry.Overall, these results suggest that while physicochemical conditions affect the composition of transient bacteria in the Threeridge mussel gut microbiome, the core microbiome is largely unaffected, and a portion of theA.plicatamicrobiome is retained regardless of the river system.How long transient bacteria remain in the gut, and to what extent these transient microbes aid in host function is still unknown. Core microbiota have been found to aid in multiple functions within animal hosts, and within freshwater mussels this core microbiome may aid in nutrient processing and cycling. Therefore, it is important to look at both transient and core microbes when studying the structure of freshwater invertebrate microbiomes. 
    more » « less
  5. Goodrich-Blair, H. (Ed.)
    ABSTRACT In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members ( Fructobacillus and Lactobacillaceae ) and honey bee-specific “core” members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro . Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of “noncore” and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. 
    more » « less