Abstract How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high‐elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high‐elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration. 
                        more » 
                        « less   
                    
                            
                            Grass versus trees: A proxy debate for deeper anxieties about competing stream worlds
                        
                    
    
            Stream restoration has become an increasingly important focus in southwestern Wisconsin's Driftless Area, an unglaciated, hilly pocket of the Upper Mississippi River Basin rich in groundwater-driven coldwater streams, recreationally important trout species, and agricultural communities. Climate change is driving a major increase in precipitation and flooding across this rural and often under-resourced region, effects complicated by the ongoing legacies of white settlement and the changes it wrought to area streams, including the burial of floodplains in sediment displaced off area hillslopes. As managers work to consider how to “restore” Driftless streams, riparian vegetation—grass versus trees—has become a central and surprisingly controversial node. Current stream restoration practice typically includes the removal of riparian trees, though that practice has come under increasing criticism. Grounded in more than 5 years of qualitative and biophysical fieldwork in the region, we build from interviews gathered with 18 Driftless Area stream restoration managers from 2018 to 2020 to point to the ways that managers leverage arguments about erosion, flooding, habitat, and angler access, among other things, in service of grass and trees. Indexing the surface flows and underflows of this restoration debate, we introduce the rhetorical concept of the proxy debate to argue that debates about grass versus trees are tethered to competing perspectives on scale, temporality, and dynamism, surficial distractions from much deeper anxieties about what a stream is and should be. We turn to the ways that these distractions serve to further distance the stream restoration enterprise from acknowledging the ongoing human and hydrologic legacies of settler colonialism, and we close by suggesting that careful attention to rhetorical power—both to what arguments say and do, and to what they elide—offers a tentative first step toward restoring lands and relations by questioning what is taken for granted and what lies beneath. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009353
- PAR ID:
- 10472403
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Environment and Planning E: Nature and Space
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2514-8486
- Format(s):
- Medium: X Size: p. 479-497
- Size(s):
- p. 479-497
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Streams are complex where biology, hydrology, and atmospheric processes are all important. Because quantifying and modeling of these systems can be challenging, many teams go directly to prescribed restoration treatments and principles. Restoration on the Middle Fork of the John Day River in Oregon, USA, shows how a project that was designed according to widely accepted restoration principles may lead to outcomes contrary to one of the project's stated goals: reducing peak temperatures for endangered salmonids on the site. This study employed the most sophisticated equipment available for stream temperature monitoring, including approximately 1 million independent hourly measurements in the 2‐week period considered. These data were collected along the river channel with fiber optic–distributed temperature sensing and were used to quantify thermal dynamics. These observations were paired with a physically based stream temperature model which was then employed to predict temperature change from design alternatives. Restored‐reach impact on peak temperature was directly correlated with the air–water interfacial area and the percentage of effective shade (R2 > 0.99). The increase in air–water area of the proposed design was predicted to increase daytime stream temperature by as much as 0.5°C upon completion of the work. Shade from riparian vegetation was found to potentially mitigate stream temperature increases, though only after decades of growth. A moderately dense canopy of 5 m tall trees blocking 17% of daily shortwave solar radiation is predicted to mitigate predicted temperature increases over the 1,800 m reach but also increases nighttime temperatures due to blocking of long‐wave radiation. These outcomes may not be intuitive to restoration practitioners and show how quantitative analysis can benefit the design of a project. This is significant in an area where riparian vegetation has been difficult to reestablish. Without quantitative analysis, restoration efforts can lead to outcomes opposite to stated goals and may be costly and disruptive interventions to fragile stream systems.more » « less
- 
            Given the widespread presence of non-native vegetation in urban and Mediterranean watersheds, it is important to evaluate how these sensitive ecosystems will respond to activities to manage and restore native vegetation conditions. This research focuses on Del Cerro, a tributary of the San Diego River in California, where non-native vegetation dominates the riparian zone, creating flooding and fire hazards. Field data were collected in 2018 to 2021 and consisted of water depth, streamflow, and stream temperature. Our data set also captured baseline conditions in the floodplain before and after the removal of burned non-native vegetation in November 2020. Observed changes in hydrologic and geomorphic conditions were used to parameterize and calibrate a two-dimensional hydraulic model to simulate urban floodplain hydraulics after vegetation removal. We utilized the U.S. Army Corps of Engineers’ Hydrologic Engineering Center River Assessment System (HEC-RAS) model to simulate the influence of canopy loss and vegetation disturbance and to assess the impacts of vegetation removal on stream restoration. We simulated streamflow, water depth, and flood extent for two scenarios: (1) 2019; pre-restoration where non-native vegetation dominated the riparian area, and (2) 2021; post-restoration following the removal of non-native vegetation and canopy. Flooding after restoration in 2021 was more frequent compared to 2019. We also observed similar flood extents and peak streamflow for storm events that accumulated half the amount of precipitation as pre-restoration conditions. Our results provide insight into the responses of small urban stream reaches to the removal of invasive vegetation and canopy cover.more » « less
- 
            The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide the raw dissolved oxygen, temperature, light, depth, and discharge data used to estimate whole-stream metabolism from 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications.more » « less
- 
            The continually increasing global population residing in urban landscapes impacts numerous ecosystem functions and services provided by urban streams. Urban stream restoration is often employed to offset these impacts and conserve or enhance the various functions and services these streams provide. Despite the assumption that ‘if you build it, [the function] will come’, current understanding of the effects of urban stream restoration on stream ecosystem functions are based on short term studies which may not capture variation in restoration effectiveness over time. We quantified the impact of stream restoration on nutrient and energy dynamics of urban streams by studying 10 urban stream reaches (five restored, five unrestored) in the Baltimore, Maryland, USA, region over a two-year period. We measured gross primary production (GPP) and ecosystem respiration (ER) at the whole-stream scale continuously throughout the study and nitrate (NO3-N) spiraling rates seasonally (spring, summer, autumn) across all reaches. There was no significant restoration effect on NO3-N spiraling across reaches. However, there was a significant canopy cover effect on NO3-N spiraling, and directly comparing paired sets of unrestored-restored reaches showed that restoration does affect NO3-N spiraling after accounting for other environmental variation. Furthermore, there was a change in GPP:ER seasonality, with restored and open-canopied reaches exhibiting higher GPP:ER during summer. The restoration effect, though, appears contingent upon altered canopy cover, which is likely to be a temporary effect of restoration and is a driver of multiple ecosystem services, e.g., habitat, riparian nutrient processing. Our results suggest that decision-making about stream restoration, including evaluations of nutrient benefits, clearly needs to consider spatial and temporal dynamics of canopy cover and tradeoffs among multiple ecosystem services. Here we provide site descriptions and nitrate spiraling data from nutrient releases performed at 10 sites throughout the greater Baltimore area. These estimates are included in the manuscript “Seeing the light: Urban stream restoration affects stream metabolism and nitrate uptake via changes in canopy cover” by A.J. Reisinger, T.R. Doody, P.M. Groffman, S.S. Kaushal, and Emma J. Rosi, which is currently accepted for publication in Ecological applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
