skip to main content


Title: Impacts of Vegetation Removal on Urban Mediterranean Stream Hydrology and Hydraulics
Given the widespread presence of non-native vegetation in urban and Mediterranean watersheds, it is important to evaluate how these sensitive ecosystems will respond to activities to manage and restore native vegetation conditions. This research focuses on Del Cerro, a tributary of the San Diego River in California, where non-native vegetation dominates the riparian zone, creating flooding and fire hazards. Field data were collected in 2018 to 2021 and consisted of water depth, streamflow, and stream temperature. Our data set also captured baseline conditions in the floodplain before and after the removal of burned non-native vegetation in November 2020. Observed changes in hydrologic and geomorphic conditions were used to parameterize and calibrate a two-dimensional hydraulic model to simulate urban floodplain hydraulics after vegetation removal. We utilized the U.S. Army Corps of Engineers’ Hydrologic Engineering Center River Assessment System (HEC-RAS) model to simulate the influence of canopy loss and vegetation disturbance and to assess the impacts of vegetation removal on stream restoration. We simulated streamflow, water depth, and flood extent for two scenarios: (1) 2019; pre-restoration where non-native vegetation dominated the riparian area, and (2) 2021; post-restoration following the removal of non-native vegetation and canopy. Flooding after restoration in 2021 was more frequent compared to 2019. We also observed similar flood extents and peak streamflow for storm events that accumulated half the amount of precipitation as pre-restoration conditions. Our results provide insight into the responses of small urban stream reaches to the removal of invasive vegetation and canopy cover.  more » « less
Award ID(s):
1848577
NSF-PAR ID:
10389205
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Hydrology
Volume:
9
Issue:
10
ISSN:
2306-5338
Page Range / eLocation ID:
170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stream restoration is a popular approach for managing nitrogen (N) in degraded, flashy urban streams. Here, we investigated the long-term effects of stream restoration involving floodplain reconnection on riparian and in-stream N transport and transformation in an urban stream in the Chesapeake Bay watershed. We examined relationships between hydrology, chemistry, and biology using a Before/After-Control/Impact (BACI) study design to determine how hydrologic flashiness, nitrate (NO3) concentrations (mg/L), and N flux, both NO3and total N (kg/yr), changed after the restoration and floodplain hydrologic reconnection to its stream channel. We examined two independent surface water and groundwater data sets (EPA and USGS) collected from 2002–2012 at our study sites in the Minebank Run watershed. Restoration was completed during 2004 and 2005. Afterward, the monthly hydrologic flashiness index, based on mean monthly discharge, decreased over time from 2002 and 2008. However, from 2008–2012 hydrologic flashiness returned to pre-restoration levels. Based on the EPA data set, NO3concentration in groundwater and surface water was significantly less after restoration while the control site showed no change. DOC and NO3were negatively related before and after restoration suggesting C limitation of N transformations. Long-term trends in surface water NO3concentrations based on USGS surface water data showed downward trends after restoration at both the restored and control sites, whereas specific conductance showed no trend. Comparisons of NO3concentrations with Clconcentrations and specific conductance in both ground and surface waters suggested that NO3reduction after restoration was not due to dilution or load reductions from the watershed. Modeled NO3flux decreased post restoration over time but the rate of decrease was reduced likely due to failure of restoration features that facilitated N transformations. Groundwater NO3concentrations varied among stream features suggesting that some engineered features may be functionally better at creating optimal conditions for N retention. However, some engineered features eroded and failed post restoration thereby reducing efficacy of the stream restoration to reduce flashiness and NO3flux. N management via stream restoration will be most effective where flashiness can be reduced and DOC made available for denitrifiers. Stream restoration may be an important component of holistic watershed management including stormwater management and nutrient source control if stream restoration and floodplain reconnection can be done in a manner to resist the erosive effects of large storm events that can degrade streams to pre-restoration conditions. Long-term evolution of water quality functions in response to degradation of restored stream channels and floodplains from urban stressors and storms over time warrants further study, however.

     
    more » « less
  2. Wildfires can pose environmental challenges in urban watersheds by altering the physical and chemical properties of soil. Further, invasive plant species in urban riparian systems may exacerbate changes in geomorphological and soil processes after fires. This research focuses on the 2018 Del Cerro fire, which burned upland and riparian areas surrounding Alvarado Creek, a tributary to the San Diego River in California. The study site has dense and highly flammable non-native vegetation cover (primarily Arundo donax) localized in the stream banks and has primarily native vegetation on the hillslopes. We estimated the post-fire organic matter and particle distributions for six time points during water years 2019 and 2020 at two soil depths, 0–15 cm and 15–30 cm, in upland and riparian areas. We observed some of the largest decreases in organic matter and particle-size distribution after the first post-fire rainfall event and a general return to initial conditions over time. Seasonal soil patterns were related to rainfall and variability in vegetation distribution. The riparian soils had higher variability in organic matter content and particle-size distributions, which was attributed to the presence of Arundo donax. The particle-size distributions were different between upland and riparian soils, where the riparian soils were more poorly graded. Overall, the greatest change occurred in the medium sands, while the fine sands appeared to be impacted the longest, which is a result of decreased vegetation that stabilized the soils. This research provides a better understanding of upland and riparian soil processes in an urban and Mediterranean system that was disturbed by non-native vegetation and fire. 
    more » « less
  3. Abstract

    Restoring hydrologic connectivity between channels and floodplains is common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact stream hydraulics, ecology, biogeochemical processing, and pollutant removal, yet rigorous field evaluations of surface water–groundwater exchange within floodplains during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection by pumping stream water onto an existing floodplain swale. Floods were conducted throughout the year to capture seasonal variation and each involved two replicate floods on successive days to test the effect of varying antecedent moisture. Water levels and specific conductance were measured in surface water, soil, and groundwater within the floodplain, along with surface flow into and out of the floodplain. Vegetation density varied seasonally and controlled the volume of surface water storage on the floodplain. By contrast, antecedent moisture conditions controlled storage of water in floodplain soils, with drier antecedent moisture conditions leading to increased subsurface storage and slower flood wave propagation across the floodplain surface. The site experienced spatial heterogeneity in vertical connectivity between surface water and groundwater across the floodplain surface, where propagation of hydrostatic pressure, preferential flow, and bulk Darcy flow were all mechanisms that may have occurred during the five floods. Vertical connectivity also increased with time, suggesting higher frequency of floodplain inundation may increase surface water–groundwater exchange across the floodplain surface. Understanding the variability of floodplain impacts on water quality noted in the literature likely requires better accounting for seasonal variations in floodplain vegetation and antecedent moisture as well as heterogeneous exchange flow mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  4. Abstract

    Riparian forests are essential for stream ecological processes in arid and semiarid regions, however, they are often highly altered by the rapid expansion of urban areas. To maintain riparian ecosystems services, it is important to better understand the effects of urbanization on riparian forests. We quantified the three‐dimensional (3D) structure and woody species composition of a riparian corridor in Utah, USA, to evaluate patterns of vegetation along stream reaches that flow through distinct hydrologic domains (with gaining and losing reaches) and through a rapid rural‐to‐urban gradient. By using LiDAR imaging and field observations, we explore the extent to which the riparian vegetation structure follows patterns of topography linked to energy and water subsidies and patterns of human influence along the stream. Whereas natural reaches of Red Butte Creek were characterized by native vegetation and typical riparian species (e.g.,Betula occidentalis), urbanized reaches had higher numbers of introduced plants (e.g.,Acer platanoides) and more upland species (e.g.,Quercus gambelii). Urban reaches were also characterized by exceptionally high trees (>18 m) in older residential neighbourhoods. In the natural area, canopy height was negatively correlated with height above the river (HAR). Additionally, we found higher cover and taller canopies on north‐facing aspects. These results show that LiDAR data, in combination with ground observations, can reveal strong influences of hydrology as well as land use in different canopy layers of riparian forests. We suggest that the decision making of individual landowners shapes vegetation beyond natural hydrological patterns, with implications for riparian forest management and restoration.

     
    more » « less
  5. Abstract

    Hydrologic connectivity controls the lateral exchange of water, solids, and solutes between rivers and floodplains, and is critical to ecosystem function, water treatment, flood attenuation, and geomorphic processes. This connectivity has been well‐studied, typically through the lens of fluvial flooding. In regions prone to heavy rainfall, the timing and magnitude of lateral exchange may be altered by pluvial flooding on the floodplain. We collected measurements of flow depth and velocity in the Trinity River floodplain in coastal Texas (USA) during Tropical Storm Imelda (2019), which produced up to 75 cm of rainfall locally. We developed a two‐dimensional hydrodynamic model at high resolution for a section of the Trinity River floodplain inspired by the compound flooding of Imelda. We then employed Lagrangian particle routing to quantify how residence times and particle velocities changed as flooding shifted from rainfall‐driven to river‐driven. Results show that heavy rainfall initiated lateral exchange before river discharge reached flood levels. The presence of rainwater also reduced floodplain storage, causing river water to be confined to a narrow corridor on the floodplain, while rainwater residence times were increased from the effect of high river flow. Finally, we analyzed the role of floodplain channels in facilitating surface‐water connectivity by varying model resolution in the floodplain. While the resolution of floodplain channels was important locally, it did not affect as much the overall floodplain behavior. This study demonstrates the complexity of floodplain hydrodynamics under conditions of heavy rainfall, with implications for sediment deposition and nutrient removal during floods.

     
    more » « less