skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: A globally synthesised and flagged bee occurrence dataset and cleaning workflow

Species occurrence data are foundational for research, conservation, and science communication, but the limited availability and accessibility of reliable data represents a major obstacle, particularly for insects, which face mounting pressures. We presentBeeBDC, a newRpackage, and a global bee occurrence dataset to address this issue. We combined >18.3 million bee occurrence records from multiple public repositories (GBIF, SCAN, iDigBio, USGS, ALA) and smaller datasets, then standardised, flagged, deduplicated, and cleaned the data using the reproducibleBeeBDC R-workflow. Specifically, we harmonised species names (following established global taxonomy), country names, and collection dates and, we added record-level flags for a series of potential quality issues. These data are provided in two formats, “cleaned” and “flagged-but-uncleaned”. TheBeeBDCpackage with online documentation provides end users the ability to modify filtering parameters to address their research questions. By publishing reproducibleRworkflows and globally cleaned datasets, we can increase the accessibility and reliability of downstream analyses. This workflow can be implemented for other taxa to support research and conservation.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Soil microbial communities play critical roles in various ecosystem processes, but studies at a large spatial and temporal scale have been challenging due to the difficulty in finding the relevant samples in available data sets as well as the lack of standardization in sample collection and processing. The National Ecological Observatory Network (NEON) has been collecting soil microbial community data multiple times per year for 47 terrestrial sites in 20 eco‐climatic domains, producing one of the most extensive standardized sampling efforts for soil microbial biodiversity to date. Here, we introduce the neonMicrobe R package—a suite of downloading, preprocessing, data set assembly, and sensitivity analysis tools for NEON’s newly published 16S and ITS amplicon sequencing data products which characterize soil bacterial and fungal communities, respectively. neonMicrobe is designed to make these data more accessible to ecologists without assuming prior experience with bioinformatic pipelines. We describe quality control steps used to remove quality‐flagged samples, report on sensitivity analyses used to determine appropriate quality filtering parameters for the DADA2 workflow, and demonstrate the immediate usability of the output data by conducting standard analyses of soil microbial diversity. The sequence abundance tables produced byneonMicrobecan be linked to NEON’s other data products (e.g., soil physical and chemical properties, plant community composition) and soil subsamples archived in the NEON Biorepository. We provide recommendations for incorporatingneonMicrobeinto reproducible scientific workflows, discuss technical considerations for large‐scale amplicon sequence analysis, and outline future directions for NEON‐enabled microbial ecology. In particular, we believe that NEON marker gene sequence data will allow researchers to answer outstanding questions about the spatial and temporal dynamics of soil microbial communities while explicitly accounting for scale dependence. We expect that the data produced by NEON and theneonMicrobeR package will act as a valuable ecological baseline to inform and contextualize future experimental and modeling endeavors.

    more » « less
  2. Abstract

    Chronograms—phylogenies with branch lengths proportional to time—represent key data on timing of evolutionary events, allowing us to study natural processes in many areas of biological research. Chronograms also provide valuable information that can be used for education, science communication, and conservation policy decisions. Yet, achieving a high-quality reconstruction of a chronogram is a difficult and resource-consuming task. Here we present DateLife, a phylogenetic software implemented as an R package and an R Shiny web application available at, that provides services for efficient and easy discovery, summary, reuse, and reanalysis of node age data mined from a curated database of expert, peer-reviewed, and openly available chronograms. The main DateLife workflow starts with one or more scientific taxon names provided by a user. Names are processed and standardized to a unified taxonomy, allowing DateLife to run a name match across its local chronogram database that is curated from Open Tree of Life’s phylogenetic repository, and extract all chronograms that contain at least two queried taxon names, along with their metadata. Finally, node ages from matching chronograms are mapped using the congruification algorithm to corresponding nodes on a tree topology, either extracted from Open Tree of Life’s synthetic phylogeny or one provided by the user. Congruified node ages are used as secondary calibrations to date the chosen topology, with or without initial branch lengths, using different phylogenetic dating methods such as BLADJ, treePL, PATHd8, and MrBayes. We performed a cross-validation test to compare node ages resulting from a DateLife analysis (i.e, phylogenetic dating using secondary calibrations) to those from the original chronograms (i.e, obtained with primary calibrations), and found that DateLife’s node age estimates are consistent with the age estimates from the original chronograms, with the largest variation in ages occurring around topologically deeper nodes. Because the results from any software for scientific analysis can only be as good as the data used as input, we highlight the importance of considering the results of a DateLife analysis in the context of the input chronograms. DateLife can help to increase awareness of the existing disparities among alternative hypotheses of dates for the same diversification events, and to support exploration of the effect of alternative chronogram hypotheses on downstream analyses, providing a framework for a more informed interpretation of evolutionary results.

    more » « less
  3. Abstract

    Biodiversity studies rely heavily on estimates of species' distributions often obtained through ecological niche modelling. Numerous software packages exist that allow users to model ecological niches using machine learning and statistical methods. However, no existing package with a graphical user interface allows users to perform model calibration and selection based on convex forms such as ellipsoids, which may match fundamental ecological niche shapes better, incorporating tools for exploring, modelling, and evaluating niches and distributions that are intuitive for both novice and proficient users.

    Here we describe anrpackage, NicheToolBox(ntbox), that allows users to conduct all processing steps involved in ecological niche modelling: downloading and curating occurrence data, obtaining and transforming environmental data layers, selecting environmental variables, exploring relationships between geographic and environmental spaces, calibrating and selecting ellipsoid models, evaluating models using binomial and partial ROC tests, assessing extrapolation risk, and performing geographic information system operations via a graphical user interface. A summary of the entire workflow is produced for use as a stand‐alone algorithm or as part of research reports.

    The method is explained in detail and tested via modelling the threatened feline speciesLeopardus wiedii. Georeferenced occurrence data for this species are queried to display both point occurrences and the IUCN extent of occurrence polygon (IUCN, 2007). This information is used to illustrate tools available for accessing, processing and exploring biodiversity data (e.g. number of occurrences and chronology of collecting) and transforming environmental data (e.g. a summary PCA for 19 bioclimatic layers). Visualizations of three‐dimensional ecological niches modelled as minimum volume ellipsoids are developed with ancillary statistics. This niche model is then projected to geographic space, to represent a corresponding potential suitability map.

    Usingntboxallows a fast and straightforward means by which to retrieve and manipulate occurrence and environmental data, which can then be implemented in model calibration, projection and evaluation for assessing distributions of species in geographic space and their corresponding environmental combinations.

    more » « less
  4. Abstract

    Estimating phenotypic distributions of populations and communities is central to many questions in ecology and evolution. These distributions can be characterized by their moments (mean, variance, skewness and kurtosis) or diversity metrics (e.g. functional richness). Typically, such moments and metrics are calculated using community‐weighted approaches (e.g. abundance‐weighted mean). We propose an alternative bootstrapping approach that allows flexibility in trait sampling and explicit incorporation of intraspecific variation, and show that this approach significantly improves estimation while allowing us to quantify uncertainty.

    We assess the performance of different approaches for estimating the moments of trait distributions across various sampling scenarios, taxa and datasets by comparing estimates derived from simulated samples with the true values calculated from full datasets. Simulations differ in sampling intensity (individuals per species), sampling biases (abundance, size), trait data source (local vs. global) and estimation method (two types of community‐weighting, two types of bootstrapping).

    We introduce thetraitstrapR package, which contains a modular and extensible set of bootstrapping and weighted‐averaging functions that use community composition and trait data to estimate the moments of community trait distributions with their uncertainty. Importantly, the first function in the workflow,trait_fill, allows the user to specify hierarchical structures (e.g. plot within site, experiment vs. control, species within genus) to assign trait values to each taxon in each community sample.

    Across all taxa, simulations and metrics, bootstrapping approaches were more accurate and less biased than community‐weighted approaches. With bootstrapping, a sample size of 9 or more measurements per species per trait generally included the true mean within the 95% CI. It reduced average percent errors by 26%–74% relative to community‐weighting. Random sampling across all species outperformed both size‐ and abundance‐biased sampling.

    Our results suggest randomly sampling ~9 individuals per sampling unit and species, covering all species in the community and analysing the data using nonparametric bootstrapping generally enable reliable inference on trait distributions, including the central moments, of communities. By providing better estimates of community trait distributions, bootstrapping approaches can improve our ability to link traits to both the processes that generate them and their effects on ecosystems.

    more » « less
  5. Abstract Background

    Patterns of multi-locus differentiation (i.e., genomic clines) often extend broadly across hybrid zones and their quantification can help diagnose how species boundaries are shaped by adaptive processes, both intrinsic and extrinsic. In this sense, the transitioning of loci across admixed individuals can be contrasted as a function of the genome-wide trend, in turn allowing an expansion of clinal theory across a much wider array of biodiversity. However, computational tools that serve to interpret and consequently visualize ‘genomic clines’ are limited, and users must often write custom, relatively complex code to do so.


    Here, we introduce the ClineHelpR R-package for visualizing genomic clines and detecting outlier loci using output generated by two popular software packages, bgc and Introgress. ClineHelpR bundles both input generation (i.e., filtering datasets and creating specialized file formats) and output processing (e.g., MCMC thinning and burn-in) with functions that directly facilitate interpretation and hypothesis testing. Tools are also provided for post-hoc analyses that interface with external packages such as ENMeval and RIdeogram.


    Our package increases the reproducibility and accessibility of genomic cline methods, thus allowing an expanded user base and promoting these methods as mechanisms to address diverse evolutionary questions in both model and non-model organisms. Furthermore, the ClineHelpR extended functionality can evaluate genomic clines in the context of spatial and environmental features, allowing users to explore underlying processes potentially contributing to the observed patterns and helping facilitate effective conservation management strategies.

    more » « less