The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I;
Strong lensing offers a precious opportunity for studying the formation and early evolution of super star clusters that are rare in our cosmic backyard. The Sunburst Arc, a lensed Cosmic Noon galaxy, hosts a young super star cluster with escaping Lyman continuum radiation. Analyzing archival Hubble Space Telescope images and emission line data from Very Large Telescope/MUSE and X-shooter, we construct a physical model for the cluster and its surrounding photoionized nebula. We confirm that the cluster is ≲4 Myr old, is extremely massive
- PAR ID:
- 10472445
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 957
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 77
- Size(s):
- Article No. 77
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract R I= 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II;R II= 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out tor = 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1shocks that power the ionized gas, withv shock=σ wind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas: and yr−1. The outer wind has slowed, so that yr−1, but it contains more ionized gas,M ⊙. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p “boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium. -
Abstract We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z mean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass of and a median star formation rate of . We measure the faint electron-temperature-sensitive [Oiii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of ( ). We investigate the applicability at highz of locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM *, our composite is well represented by thez ∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM *and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz ∼ 2. -
Abstract We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Ly
α absorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <z abs< 3.5, such that the secondary sightline probes absorption from Lyα and a large suite of metal-line transitions (including Oi , Cii , Civ , Siii , and Siiv ) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R ⊥≤ 284 kpc. Analysis of Lyα in the CGM sightlines shows an anticorrelation betweenR ⊥and Hi column density (N HI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Cii and Siii withN > 1013cm−2within 100 kpc of DLAs are larger by 2σ than those measured in the CGM of Lyman break galaxies (Cf (N CII ) > 0.89 and ). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andN HI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range ), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civ λ 1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ ) correlated, suggesting that they trace the potential well of the host halo overR ⊥≲ 300 kpc scales. At the same time, velocity centroids for Civ λ 1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M ⊙. -
Abstract We present a measurement of the intrinsic space density of intermediate-redshift (
z ∼ 0.5), massive (M *∼ 1011M ⊙), compact (R e ∼ 100 pc) starburst (ΣSFR∼ 1000M ⊙yr−1kpc−1) galaxies with tidal features indicative of them having undergone recent major mergers. A subset of them host kiloparsec-scale, > 1000 km s−1outflows and have little indication of AGN activity, suggesting that extreme star formation can be a primary driver of large-scale feedback. The aim for this paper is to calculate their space density so we can place them in a better cosmological context. We do this by empirically modeling the stellar populations of massive, compact starburst galaxies. We determine the average timescale on which galaxies that have recently undergone an extreme nuclear starburst would be targeted and included in our spectroscopically selected sample. We find that massive, compact starburst galaxies targeted by our criteria would be selectable for Myr and have an intrinsic space density . This space density is broadly consistent with ourz ∼ 0.5 compact starbursts being the most extremely compact and star-forming low-redshift analogs of the compact star-forming galaxies in the early universe, as well as them being the progenitors to a fraction of intermediate-redshift, post-starburst, and compact quiescent galaxies. -
Abstract We present a new suite of numerical simulations of the star-forming interstellar medium (ISM) in galactic disks using the TIGRESS-NCR framework. Distinctive aspects of our simulation suite are (1) sophisticated and comprehensive numerical treatments of essential physical processes including magnetohydrodynamics, self-gravity, and galactic differential rotation, as well as photochemistry, cooling, and heating coupled with direct ray-tracing UV radiation transfer and resolved supernova feedback and (2) wide parameter coverage including the variation in metallicity over
, gas surface density Σgas∼ 5–150M ⊙pc−2, and stellar surface density Σstar∼ 1–50M ⊙pc−2. The range of emergent star formation rate surface density is ΣSFR∼ 10−4–0.5M ⊙kpc−2yr−1, and ISM total midplane pressure isP tot/k B = 103–106cm−3K, withP totequal to the ISM weight . For given Σgasand Σstar, we find . We provide an interpretation based on the pressure-regulated feedback-modulated (PRFM) star formation theory. The total midplane pressure consists of thermal, turbulent, and magnetic stresses. We characterize feedback modulation in terms of the yield ϒ, defined as the ratio of each stress to ΣSFR. The thermal feedback yield varies sensitively with both weight and metallicity as , while the combined turbulent and magnetic feedback yield shows weaker dependence . The reduction in ΣSFRat low metallicity is due mainly to enhanced thermal feedback yield, resulting from reduced attenuation of UV radiation. With the metallicity-dependent calibrations we provide, PRFM theory can be used for a new subgrid star formation prescription in cosmological simulations where the ISM is unresolved.