skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hanging under the ledge: synergistic consequences of UVA and UVB radiation on scyphozoan polyp reproduction and health
Overexposure to ultraviolet radiation (UVR) emitted by the sun can damage and kill living cells in animals, plants, and microorganisms. In aquatic environments, UVR can penetrate nearly 47 m into the water column, severely impacting many marine organisms. Jellyfish are often considered resilient to environmental stressors, potentially explaining their success in environmentally disturbed areas, but the extent of their resilience to UVR is not well known. Here, we tested resiliency to UVR by exposing benthic polyps of the moon jellyfish,Aureliasp., to UVA and UVB—the two types of UVR that reach Earth’s surface—both separately and in combination. We quantified asexual reproduction rates and polyp attachment to hard substrate, in addition to qualitative observations of polyp health. There were no differences in asexual reproduction rates between polyps exposed to isolated UVA and polyps that received no UVR. Polyps reproduced when exposed to short term (∼7–9 days) isolated UVB, but long-term exposure limited reproduction and polyp attachment to the substrate. When exposed to both UVA and UVB, polyps were unable to feed and unable to remain attached to the substrate, did not reproduce, and ultimately, experienced 100% mortality within 20 days. Although many studies only examine the effects of UVB, the combination of UVA and UVB here resulted in greater negative impacts than either form of UVR in isolation. Therefore, studies that only examine effects of UVB potentially underestimate environmentally relevant effects of UVR. These results suggest that polyps are unsuccessful under UVR stress, so the planula larval stage must settle in low-UVR environments to establish the success of the polyp stage.  more » « less
Award ID(s):
1757536
PAR ID:
10472529
Author(s) / Creator(s):
;
Editor(s):
Claudia Pogoreutz
Publisher / Repository:
O'Reilly Media Inc.; Sage
Date Published:
Journal Name:
PeerJ
Volume:
11
ISSN:
2167-8359
Page Range / eLocation ID:
e14749
Subject(s) / Keyword(s):
Ecology, Marine Biology, Climate Change Biology, Biological Oceanography Scyphozoan, Ultraviolet radiation, Cnidarian, Polyp, Asexual reproduction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cnidarians exhibit incredible reproductive diversity, with most capable of sexual and asexual reproduction. Here, we investigate factors that influence asexual reproduction in the burrowing sea anemoneNematostella vectensis,which can propagate asexually by transverse fission of the body column. By altering culture conditions, we demonstrate that the presence of a burrowing substrate strongly promotes transverse fission. In addition, we show that animal size does not affect fission rates, and that the plane of fission is fixed along the oral–aboral axis of the polyp. Homeobox transcription factors and components of the TGFβ, Notch, and FGF signalling pathways are differentially expressed in polyps undergoing physal pinching suggesting they are important regulators of transverse fission. Gene ontology analyses further suggest that during transverse fission the cell cycle is suppressed, and that cell adhesion and patterning mechanisms are downregulated to promote separation of the body column. Finally, we demonstrate that the rate of asexual reproduction is sensitive to population density. Collectively, these experiments provide a foundation for mechanistic studies of asexual reproduction inNematostella,with implications for understanding the reproductive and regenerative biology of other cnidarian species. 
    more » « less
  2. Abstract Aquatic species found in habitats with limited shade and little dissolved organic carbon (DOC) have increased vulnerability to ultraviolet radiation (UVR) damage. Pigmentation is a common mechanism used by animals for protection from UVR. A pigmented bdelloid rotifer,Philodina, occurs in high densities in shallow rock pools in El Paso Co., TX, and is subject to repeated desiccation and high UVR. To understand the roles of DOC, pigmentation, and dormancy in reducing the effects of UVR exposure in these rotifers: (1) DOC levels in rock pools were measured before and after the summer monsoon season and (2) hydrated or dormant bdelloids (desiccated for 0, 1, 7, or 32 d) that differed in degree of pigmentation (highly, moderately, lightly, and none) were exposed to three intensities of UVB radiation (low, mid, or high) and monitored for survival after 48 h. Pigmented bdelloids were found in rock pools with lower DOC concentrations. Logistic regression analysis indicated that pigmentation level, desiccation time, and UVB intensity all affected survival. Bdelloids in the dormant form for 1 d were more resistant to UVB exposure at all pigmentation levels. However, as desiccation time increased, the odds of surviving decreased. Hydrated highly pigmented bdelloids were three times more likely to survive desiccation, UVB radiation, and their combined effects. Prolonged periods of drought due to the changing climate will alter DOC concentrations, causing photoprotection to become an increasingly important survival strategy for aquatic invertebrates, especially those inhabiting shallow waters. 
    more » « less
  3. Abstract. Marine phytoplankton such as bloom-forming, calcite-producingcoccolithophores, are naturally exposed to solar ultraviolet radiation (UVR,280–400nm) in the ocean's upper mixed layers. Nevertheless, the effects ofincreasing carbon dioxide (CO2)-induced ocean acidification and warming have rarelybeen investigated in the presence of UVR. We examined calcification andphotosynthetic carbon fixation performance in the most cosmopolitancoccolithophorid, Emiliania huxleyi, grown under high(1000µatm, HC; pHT: 7.70) and low (400µatm,LC; pHT: 8.02) CO2 levels, at 15C,20C and 24C with or without UVR. The HCtreatment did not affect photosynthetic carbon fixation at 15C,but significantly enhanced it with increasing temperature. Exposure to UVRinhibited photosynthesis, with higher inhibition by UVA (320–395nm) thanUVB (295–320nm), except in the HC and 24C-grown cells, in whichUVB caused more inhibition than UVA. A reduced thickness of the coccolith layerin the HC-grown cells appeared to be responsible for the UV-inducedinhibition, and an increased repair rate of UVA-derived damage in theHC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition.While calcification was reduced with elevated CO2 concentration,exposure to UVB or UVA affected the process differentially, with the formerinhibiting it and the latter enhancing it. UVA-induced stimulation of calcification washigher in the HC-grown cells at 15 and 20C, whereas at24C observed enhancement was not significant. The calcificationto photosynthesis ratio (Cal∕Pho ratio) was lower in the HC treatment,and increasing temperature also lowered the value. However, at 20 and24C, exposure to UVR significantly increased the Cal∕Phoratio, especially in HC-grown cells, by up to 100%. This implies thatUVR can counteract the negative effects of the “greenhouse” treatment onthe Cal∕Pho ratio; hence, UVR may be a key stressor when considering theimpacts of future greenhouse conditions on E. huxleyi
    more » « less
  4. null (Ed.)
    Intrinsic skin aging and photoaging, from exposure to ultraviolet (UV) radiation, are associated with altered regulation of genes associated with the extracellular matrix (ECM) and inflammation, as well as cellular damage from oxidative stress. The regulatory properties of 1-alpha, 25dihydroxyvitamin D3 (vitamin D) include endocrine, ECM regulation, cell differentiation, photoprotection, and anti-inflammation. The goal of this research was to identify the beneficial effects of vitamin D in preventing intrinsic skin aging and photoaging, through its direct effects as well as its effects on the ECM, associated heat shock proteins (HSP-47, and -70), cellular oxidative stress effects, and inflammatory cytokines [interleukin (IL)-1 and IL-8] in non-irradiated, UVA-radiated, UVB-radiated dermal fibroblasts. With regard to the ECM, vitamin D stimulated type I collagen and inhibited cellular elastase activity in non-irradiated fibroblasts; and stimulated type I collagen and HSP-47, and inhibited elastin expression and elastase activity in UVA-radiated dermal fibroblasts. With regard to cellular protection, vitamin D inhibited oxidative damage to DNA, RNA, and lipids in non-irradiated, UVA-radiated and UVB-radiated fibroblasts, and, in addition, increased cell viability of UVB-radiated cells. With regard to anti-inflammation, vitamin D inhibited expression of Il-1 and IL-8 in UVA-radiated fibroblasts, and stimulated HSP-70 in UVA-radiated and UVB-radiated fibroblasts. Overall, vitamin D is predominantly beneficial in preventing UVA-radiation induced photoaging through the differential regulation of the ECM, HSPs, and inflammatory cytokines, and protective effects on the cellular biomolecules. It is also beneficial in preventing UVB-radiation associated photoaging through the stimulation of cell viability and HSP-70, and the inhibition of cellular oxidative damage, and in preventing intrinsic aging through the stimulation of type I collagen and inhibition of cellular oxidative damage. 
    more » « less
  5. Over the course of more than half a billion years of independent evolution, cnidarians (e.g. sea anemones, corals and jellyfishes) have evolved diverse, multicellular, mechanosensory structures ranging from tentacles of hydroids to gravity-sensors of moon jellyfish. The ectodermal epithelium of mechanosensory structures houses the mechanosensory neuron – known as the concentric hair cell – characterized by an apical mechanosensory apparatus consisting of a single cilium surrounded by one or multiple rings of microvilli/stereovilli. While distinct concentric hair cell types are known to occur within life-cycle-stage-specific structures such as the sea anemone tentacles, it is unclear whether diverse concentric hair cell types exist across life cycle phases of any cnidarian. Here we report evidence from the hydrozoan Cladonema pacificum that concentric hair cells of sedentary polyps are distinct from those of free-swimming medusae. By carrying out touch assays, we demonstrate that polyps and medusae exhibit distinct mechanosensory behaviors. Moreover, we find that concentric hair cells in the ectodermal epithelium of touch-sensitive regions in polyps differ from those in medusae in the morphology of apical sensory apparatuses. Furthermore, polyp-type concentric hair cells are not retained in the ectoderm of medusa buds, and medusa-type concentric hair cells begin to form de novo during medusa formation. Taken together, these findings suggest that distinct mechanosensitive behaviors of polyps and medusae are mediated by morphologically different sets of mechanosensory neurons that develop via life-cycle-stage-specific mechanisms. We propose that cell type diversification of mechanosensory neurons occurred not only within a given life cycle phase but across life cycle phases in cnidarian evolution. 
    more » « less