skip to main content

This content will become publicly available on September 11, 2024

Title: Length-weight relationships for abundant coral reef fish species from eight islands in French Polynesia
Here we present length-weight relationships (LWR) for 11 reef fish species from eight islands in French Polynesia. A total of 1,930 fish were collected from five islands in the Society Archipelago (Moorea, Tahiti, Raiatea, Huahine, Tetiaroa) and in three atolls of the Tuamotu Archipelago (Takapoto, Tikehau, and Rangiroa). These fishes span trophic levels, including planktivores, herbivores, and carnivores, and are among the most abundant species for the region. Estimates include LWRs for species never previously published or available in the literature or accessible databases. Measurements of total length (TL: 0.1 cm precision) and total weight (W: 0.01 g precision) were taken. These estimates increase the number of available and robust LWRs for coral reef fishes, providing a better understanding of patterns of growth for these species. With a particular focus on small-bodied species, among the most abundant observed in underwater visual censuses, these estimates will allow marine resource managers and local scientists to characterize fish biomass in French Polynesia with greater precision.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
R. Causse
Publisher / Repository:
Société Française d'Ichtyologie
Date Published:
Journal Name:
Subject(s) / Keyword(s):
["Coral reef fishes","French Polynesia","Length-weight relationships","Morphology","Aquarium species","Biomass"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Consumers mediate nutrient cycling through excretion and egestion across most ecosystems. In nutrient‐poor tropical waters such as coral reefs, nutrient cycling is critical for maintaining productivity. While the cycling of fish‐derived inorganic nutrients via excretion has been extensively investigated, the role of egestion for nutrient cycling has remained poorly explored. We sampled the fecal contents of 570 individual fishes across 40 species, representing six dominant trophic guilds of coral reef fishes in Moorea, French Polynesia. We measured fecal macro‐ (proteins, carbohydrates, lipids) and micro‐ (calcium, copper, iron, magnesium, manganese, zinc) nutrients and compared the fecal nutrient quantity and quality across trophic guilds, taxa, and body size. Macro‐ and micronutrient concentrations in fish feces varied markedly across species. Genera and trophic guild best predicted fecal nutrient concentrations. In addition, nutrient composition in feces was unique among species within both trophic guilds (herbivores and corallivores) and genera (AcanthurusandChaetodon). Particularly, certain coral reef fishes (e.g.,Thalassoma hardwicke,Chromis xanthura,Chaetodon pelewensisandAcanthurus pyroferus) harbored relatively high concentrations of micronutrients (e.g., Mn, Mg, Zn and Fe, respectively) that are known to contribute to ocean productivity and positively impact coral physiological performances. Given the nutrient‐rich profiles across reef fish feces, conserving holistic reef fish communities ensures the availability of nutritional pools on coral reefs. We therefore suggest that better integration of consumer egestion dynamics into food web models and ecosystem‐scale processes will facilitate an improved understanding of coral reef functioning.

    more » « less
  2. Abstract

    Anthropogenic stressors have strong impacts on ecosystems. To understand their influence, detailed knowledge about trophic relationships among species is critical. However, this requires both exceptional resolution in dietary assessments and sampling breadth within communities, especially for highly diverse, tropical ecosystems.

    We used gut content metabarcoding across a broad range of coral reef fishes (8 families, 22 species) in Mo'orea, French Polynesia, to test whether this technique has the potential to capture the structure of a hyperdiverse marine food web. Moreover, we explored whether taxonomic groups (families) and traditional, broad‐scale trophic assignments explained fish diet across four different metrics of quantifying predator–prey interactions.

    Metabarcoding yielded a large number (4,341) of unique operational taxonomic units (i.e. prey) with high‐resolution taxonomic assignments (i.e. often to the level of genus or species). We demonstrate that across multiple metrics, taxonomic group at the family level is a consistently better, albeit still weak, predictor of empirical trophic relationships than frequently used, broad‐scale functional assignments. Our method also reveals a complex trophic network with fine‐scale partitioning among species, further emphasizing the importance of examining fish diets beyond broad trophic categories.

    We demonstrate the capacity of metabarcoding to reconstruct diverse and complex food webs with exceptional resolution, a significant advancement from traditional food web reconstruction. Furthermore, this method allows us to pinpoint the trophic niche of species with niche‐based modelling, even across hyperdiverse species assemblages such as coral reefs. In conjunction with complementary techniques such as stable isotope analysis, applying metabarcoding to whole communities will provide unparalleled information about energy and nutrient fluxes and inform their susceptibility to disturbances even in the world's most diverse ecosystems.

    more » « less
  3. null (Ed.)
    Reef-building corals can harbour high abundances of diverse invertebrate epifauna. Coral characteristics and environmental conditions are important drivers of community structure of coral-associated invertebrates; however, our current understanding of drivers of epifaunal distributions is still unclear. This study tests the relative importance of the physical environment (current flow speed) and host quality (e.g., colony height, surface area, distance between branches, penetration depth among branches, and background partial mortality) in structuring epifaunal communities living within branching Pocillopora colonies on a back reef in Moorea, French Polynesia. A total of 470 individuals belonging to four phyla, 16 families and 39 genera were extracted from 36 Pocillopora spp. colonies. Decapods were the most abundant epifaunal organisms (accounting for 84% of individuals) found living in Pocillopora spp. While coral host characteristics and flow regime are very important, these parameters were not correlated with epifaunal assemblages at the time of the study. Epifaunal assemblages associated with Pocillopora spp. were consistent and minimally affected by differences in host characteristics and flow regime. The consistency in abundance and taxon richness among colonies (regardless of habitat characteristics) highlighted the importance of total habitat availability. With escalating effects of climate change and other localized disturbances, it is critical to preserve branching corals to support epifaunal communities. 
    more » « less
  4. null (Ed.)
    Cryptic species that are morphologically similar co-occur because either the rate of competitive exclusion is very slow, or because they are not, in fact, ecologically similar. The processes that maintain cryptic local diversity may, therefore, be particularly subtle and difficult to identify. Here, we uncover differences among several cryptic species in their relative abundance across a depth gradient within a dominant and ecologically important genus of hard coral, Pocillopora. From extensive sampling unbiased towards morphological characters, at multiple depths on the fore reef around the island of Mo’orea, French Polynesia, we genetically identified 673 colonies in the Pocillopora species complex. We identified 14 mitochondrial Open Reading Frame haplotypes (mtORFs, a well-studied and informative species marker used for pocilloporids), which included at least six nominal species, and uncovered differences among haplotypes in their relative abundance at 5, 10, and 20 m at four sites around the island. Differences in relative haplotype abundance across depths were greater than differences among sites separated by several kilometers. The four most abundant species are often visibly indistinguishable at the gross colony level, yet they exhibited stark differences in their associations with light irradiance and daily water temperature variance. The pattern of community composition was associated with frequent cooling in deeper versus shallower water more than warmer temperatures in shallow water. Our results indicate that these cryptic species are not all ecologically similar. The differential abundance of Pocillopora cryptic species across depth should promote their coexistence at the reef scale, as well as promote resilience through response diversity. 
    more » « less
  5. Abstract

    Marine protected area (MPA) networks, with varying degrees of protection and use, can be useful tools to achieve both conservation and fisheries management benefits. Assessing whetherMPAnetworks meet their objectives requires data from Before the establishment of the network to better discern natural spatiotemporal variation and preexisting differences from the response to protection. Here, we use a Progressive‐ChangeBACIPSapproach to assess the ecological effects of a network of five fully and three moderately protectedMPAs on fish communities in two coral reef habitats (lagoon and fore reef) based on a time series of data collected five times (over three years) Before and 12 times (over nine years) After the network's establishment on the island of Moorea, French Polynesia. At the network scale, on the fore reef, density and biomass of harvested fishes increased by 19.3% and 24.8%, respectively, in protected areas relative to control fished areas. Fully protected areas provided greater ecological benefits than moderately protected areas. In the lagoon, density and biomass of harvested fishes increased, but only the 31% increase in biomass in fully protectedMPAs was significant. Non‐harvested fishes did not respond to protection in any of the habitats. We propose that these responses to protection were small, relative to otherMPAassessments, due to limited compliance and weak surveillance, although other factors such as the occurrence of a crown‐of‐thorns starfish outbreak and a cyclone after the network was established may also have impeded the ability of the network to provide benefits. Our results highlight the importance of using fully protectedMPAs over moderately protectedMPAs to achieve conservation objectives, even in complex social–ecological settings, but also stress the need to monitor effects and adapt management based on ongoing assessments.

    more » « less