skip to main content


Title: Ecological evaluation of a marine protected area network: a progressive‐change BACIPS approach
Abstract

Marine protected area (MPA) networks, with varying degrees of protection and use, can be useful tools to achieve both conservation and fisheries management benefits. Assessing whetherMPAnetworks meet their objectives requires data from Before the establishment of the network to better discern natural spatiotemporal variation and preexisting differences from the response to protection. Here, we use a Progressive‐ChangeBACIPSapproach to assess the ecological effects of a network of five fully and three moderately protectedMPAs on fish communities in two coral reef habitats (lagoon and fore reef) based on a time series of data collected five times (over three years) Before and 12 times (over nine years) After the network's establishment on the island of Moorea, French Polynesia. At the network scale, on the fore reef, density and biomass of harvested fishes increased by 19.3% and 24.8%, respectively, in protected areas relative to control fished areas. Fully protected areas provided greater ecological benefits than moderately protected areas. In the lagoon, density and biomass of harvested fishes increased, but only the 31% increase in biomass in fully protectedMPAs was significant. Non‐harvested fishes did not respond to protection in any of the habitats. We propose that these responses to protection were small, relative to otherMPAassessments, due to limited compliance and weak surveillance, although other factors such as the occurrence of a crown‐of‐thorns starfish outbreak and a cyclone after the network was established may also have impeded the ability of the network to provide benefits. Our results highlight the importance of using fully protectedMPAs over moderately protectedMPAs to achieve conservation objectives, even in complex social–ecological settings, but also stress the need to monitor effects and adapt management based on ongoing assessments.

 
more » « less
NSF-PAR ID:
10462681
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
2
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.

     
    more » « less
  2. Abstract

    In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northernRockyMountains of theU.S. andCanada,Pinus albicaulis, a stress‐tolerant pine, initiates tree islands at higher frequencies than other conifers – that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated)P. albicaulisleading to tree island initiation may be important for different life‐history stages for leeward conifers, but it is not known which life‐history stages are influenced and protection provided. However,P. albicaulismortality from the non‐native pathogenCronartium ribicolapotentially disrupts these facilitative interactions, reducing tree island initiation. In twoRockyMountain eastern slope study areas, we experimentally examined fundamental plant–plant interactions which might facilitate tree island formation: the protection offered byP. albicaulisto leeward seed and seedling life‐history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality fromC. ribicolafor windwardP. albicaulisto determine whether loss ofP. albicaulisfromC. ribicolaimpacts leeward conifers. Relative to other common solitary conifers at treeline, solitaryP. albicaulishad higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest inP. albicaulismicrosites. Planted seedling survival was low among all microsites examined. Simulating death of windwardP. albicaulisbyC. ribicolareduced shoot growth of leeward trees. Loss ofP. albicaulisto exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms.

     
    more » « less
  3. Abstract

    Testate (shell‐building) amoebae, such as the Arcellinida (Amoebozoa), are useful bioindicators for climate change. Though past work has relied on morphological analyses to characterize Arcellinida diversity, genetic analyses revealed the presence of multiple cryptic species underlying morphospecies. Here, we design and deploy Arcellinida‐specific primers for theSSUrDNAgene to assess the community composition on the molecular level in a pilot study of two samplings from a New England fen: (1) 36‐cm horizontal transects and vertical cores; and (2) 26‐m horizontal transects fractioned into four size classes (2–10, 10–35, 35–100, and 100–300 μm). Analyses of these data show the following: (1) a considerable genetic diversity within Arcellinida, much of which comes from morphospecies lacking sequences on GenBank; (2) communities characterized byDNA(i.e. active + quiescent) are distinct from those characterized byRNA(i.e. active, indicator of biomass); (3) active communities on the surface tend to be more similar to one another than to core communities, despite considerable heterogeneity; and (4) analyses of communities fractioned by size find some lineages (OTUs) that are abundant in disjunct size categories, suggesting the possibility of life‐history stages. Together, these data demonstrate the potential of these primers to elucidate the diversity of Arcellinida communities in diverse habitats.

     
    more » « less
  4. Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity conservation and human well-being, including improving climate resilience and equitable access to nature. At a national level, they are central components in the U.S. commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the same ecological and social benefits. A U.S. system of MPAs that is equitable, well-managed, representative and connected, and includes areas at a level of protection that can deliver desired outcomes is best positioned to support national goals. We used a new MPA framework, The MPA Guide, to assess the level of protection and stage of establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly protected against extractive or destructive human activities, is in the central Pacific ocean. Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central Pacific MPA area is lightly or minimally protected against extractive or destructive human activities. These results highlight an urgent need to improve the quality, quantity, and representativeness of MPA protection in U.S. waters to bring benefits to human and marine communities. We identify and review the state of the science, including focal areas for achieving desired MPA outcomes and lessons learned from places where sound ecological and social design principles come together in MPAs that are set up to achieve national goals for equity, climate resilience, and biodiversity conservation. We recommend key opportunities for action specific to the U.S. context, including increasing funding, research, equity, and protection level for new and existing U.S. MPAs.

     
    more » « less
  5. Abstract

    Cultivated crops are generally expected to have less abiotic stress tolerance than their wild relatives. However, this assumption is not well supported by empirical literature and may depend on the type of stress and how it is imposed, as well as the measure of tolerance being used. Here, we investigated whether wild and cultivated accessions ofHelianthus annuusdiffered in stress tolerance assessed as proportional decline in biomass due to drought and whether wild and cultivated accessions differed in trait responses to drought and trait associations with tolerance. In a greenhouse study,H. annuusaccessions in the two domestication classes (eight cultivated and eight wild accessions) received two treatments: a well‐watered control and a moderate drought implemented as a dry down followed by maintenance at a predetermined soil moisture level with automated irrigation. Treatments were imposed at the seedling stage, and plants were harvested after 2 weeks of treatment. The proportional biomass decline in response to drought was 24% for cultivatedH. annuusaccessions but was not significant for the wild accessions. Thus, using the metric of proportional biomass decline, the cultivated accessions had less drought tolerance. Among accessions, there was no tradeoff between drought tolerance and vigor assessed as biomass in the control treatment. In a multivariate analysis, wild and cultivated accessions did not differ from each other or in response to drought for a subset of morphological, physiological, and allocational traits. Analyzed individually, traits varied in response to drought in wild and/or cultivated accessions, including declines in specific leaf area, leaf theoretical maximum stomatal conductance (gsmax), and stomatal pore length, but there was no treatment response for stomatal density, succulence, or the ability to osmotically adjust. Focusing on traits associations with tolerance, plasticity in gsmaxwas the most interesting because its association with tolerance differed by domestication class (although the effects were relatively weak) and thus might contribute to lower tolerance of cultivated sunflower. OurH. annuusresults support the expectation that stress tolerance is lower in crops than wild relatives under some conditions. However, determining the key traits that underpin differences in moderate drought tolerance between wild and cultivatedH. annuusremains elusive.

     
    more » « less