skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GeCo: quality counterfactual explanations in real time
Machine learning is increasingly applied in high-stakes decision making that directly affect people's lives, and this leads to an increased demand for systems to explain their decisions. Explanations often take the form ofcounterfactuals, which consists of conveying to the end user what she/he needs to change in order to improve the outcome. Computing counterfactual explanations is challenging, because of the inherent tension between a rich semantics of the domain, and the need for real time response. In this paper we present CeCo, the first system that can compute plausible and feasible counterfactual explanations in real time. At its core, CeCo relies on a genetic algorithm, which is customized to favor searching counterfactual explanations with the smallest number of changes. To achieve real-time performance, we introduce two novel optimizations: Δ-representation of candidate counterfactuals, and partial evaluation of the classifier. We compare empirically CeCo against five other systems described in the literature, and show that it is the only system that can achieve both high quality explanations and real time answers.  more » « less
Award ID(s):
1907997
PAR ID:
10472613
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
PVLDB
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
14
Issue:
9
ISSN:
2150-8097
Page Range / eLocation ID:
1681 to 1693
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning systems are deployed in domains such as hiring and healthcare, where undesired classifications can have serious ramifications for the user. Thus, there is a rising demand for explainable AI systems which provide actionable steps for lay users to obtain their desired outcome. To meet this need, we propose FACET, the first explanation analytics system which supports a user in interactively refining counterfactual explanations for decisions made by tree ensembles. As FACET's foundation, we design a novel type of counterfactual explanation called the counterfactual region. Unlike traditional counterfactuals, FACET's regions concisely describe portions of the feature space where the desired outcome is guaranteed, regardless of variations in exact feature values. This property, which we coin explanation robustness, is critical for the practical application of counterfactuals. We develop a rich set of novel explanation analytics queries which empower users to identify personalized counterfactual regions that account for their real-world circumstances. To process these queries, we develop a compact high-dimensional counterfactual region index along with index-aware query processing strategies for near real-time explanation analytics. We evaluate FACET against state-of-the-art explanation techniques on eight public benchmark datasets and demonstrate that FACET generates actionable explanations of similar quality in an order of magnitude less time while providing critical robustness guarantees. Finally, we conduct a preliminary user study which suggests that FACET's regions lead to higher user understanding than traditional counterfactuals. 
    more » « less
  2. Post-hoc explanations of machine learning models are crucial for people to understand and act on algorithmic predictions. An intriguing class of explanations is through counterfactuals, hypothetical examples that show people how to obtain a different prediction. We posit that effective counterfactual explanations should satisfy two properties: feasibility of the counterfactual actions given user context and constraints, and diversity among the counterfactuals presented. To this end, we propose a framework for generating and evaluating a diverse set of counterfactual explanations based on determinantal point processes. To evaluate the actionability of counterfactuals, we provide metrics that enable comparison of counterfactual-based methods to other local explanation methods. We further address necessary tradeoffs and point to causal implications in optimizing for counterfactuals. Our experiments on four real-world datasets show that our framework can generate a set of counterfactuals that are diverse and well approximate local decision boundaries, outperforming prior approaches to generating diverse counterfactuals. We provide an implementation of the framework at https://github.com/microsoft/DiCE. 
    more » « less
  3. Counterfactual explanations are emerging as an attractive option for providing recourse to individuals adversely impacted by algorithmic decisions. As they are deployed in critical applications (e.g. law enforcement, financial lending), it becomes important to ensure that we clearly understand the vulnerabilties of these methods and find ways to address them. However, there is little understanding of the vulnerabilities and shortcomings of counterfactual explanations. In this work, we introduce the first framework that describes the vulnerabilities of counterfactual explanations and shows how they can be manipulated. More specifically, we show counterfactual explanations may converge to drastically different counterfactuals under a small perturbation indicating they are not robust. Leveraging this insight, we introduce a novel objective to train seemingly fair models where counterfactual explanations find much lower cost recourse under a slight perturbation. We describe how these models can unfairly provide low-cost recourse for specific subgroups in the data while appearing fair to auditors. We perform experiments on loan and violent crime prediction data sets where certain subgroups achieve up to 20x lower cost recourse under the perturbation. These results raise concerns regarding the dependability of current counterfactual explanation techniques, which we hope will inspire investigations in robust counterfactual explanations. 
    more » « less
  4. Counterfactual explanations are emerging as an attractive option for providing recourse to individuals adversely impacted by algorithmic decisions. As they are deployed in critical applications (e.g. law enforcement, financial lending), it becomes important to ensure that we clearly understand the vulnerabilities of these methods and find ways to address them. However, there is little understanding of the vulnerabilities and shortcomings of counterfactual explanations. In this work, we introduce the first framework that describes the vulnerabilities of counterfactual explanations and shows how they can be manipulated. More specifically, we show counterfactual explanations may converge to drastically different counterfactuals under a small perturbation indicating they are not robust. Leveraging this insight, we introduce a novel objective to train seemingly fair models where counterfactual explanations find much lower cost recourse under a slight perturbation. We describe how these models can unfairly provide low-cost recourse for specific subgroups in the data while appearing fair to auditors. We perform experiments on loan and violent crime prediction data sets where certain subgroups achieve up to 20x lower cost recourse under the perturbation. These results raise concerns regarding the dependability of current counterfactual explanation techniques, which we hope will inspire investigations in robust counterfactual explanations. 
    more » « less
  5. Graph Neural Networks (GNNs) have been widely deployed in various real-world applications. However, most GNNs are black-box models that lack explanations. One strategy to explain GNNs is through counterfactual explanation, which aims to find minimum perturbations on input graphs that change the GNN predictions. Existing works on GNN counterfactual explanations primarily concentrate on the local-level perspective (i.e., generating counterfactuals for each individual graph), which suffers from information overload and lacks insights into the broader cross-graph relationships. To address such issues, we propose GlobalGCE, a novel global-level graph counterfactual explanation method. GlobalGCE aims to identify a collection of subgraph mapping rules as counterfactual explanations for the target GNN. According to these rules, substituting certain significant subgraphs with their counterfactual subgraphs will change the GNN prediction to the desired class for most graphs (i.e., maximum coverage). Methodologically, we design a significant subgraph generator and a counterfactual subgraph autoencoder in our GlobalGCE, where the subgraphs and the rules can be effectively generated. Extensive experiments demonstrate the superiority of our GlobalGCE compared to existing baselines. 
    more » « less