skip to main content


Title: Witnessability of Undecidable Problems

Many problems in programming language theory and formal methods are undecidable, so they cannot be solved precisely. Practical techniques for dealing with undecidable problems are often based on decidable approximations. Undecidability implies that those approximations are always imprecise. Typically, practitioners use heuristics andad hocreasoning to identify imprecision issues and improve approximations, but there is a lack of computability-theoretic foundations about whether those efforts can succeed.

This paper shows a surprising interplay between undecidability and decidable approximations: there exists a class of undecidable problems, such that it is computable to transform any decidable approximation to a witness input demonstrating its imprecision. We call those undecidable problemswitnessable problems. For example, if a program propertyPis witnessable, then there exists a computable functionfP, such thatfPtakes as input the code of any program analyzer targetingPand produces an input programwon which the program analyzer is imprecise. An even more surprising fact is that the class of witnessable problems includes almost all undecidable problems in programming language theory and formal methods. Specifically, we prove the diagonal halting problemKis witnessable, and the class of witnessable problems is closed under complements and many-one reductions. In particular, all “non-trivial semantic properties of programs” mentioned in Rice’s theorem are witnessable. We also explicitly construct a problem in the non-witnessable (and undecidable) class and show that both classes have cardinality 20.

Our results offer a new perspective on the understanding of undecidability: for witnessable problems, although it is impossible to solve them precisely, it is always possible to improve any decidable approximation to make it closer to the precise solution. This fact formally demonstrates that research efforts on such approximations are promising and shows there exist universal ways to identify precision issues of program analyzers, program verifiers, SMT solvers, etc., because their essences are decidable approximations of witnessable problems.

 
more » « less
Award ID(s):
1917924
PAR ID:
10472620
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
7
Issue:
POPL
ISSN:
2475-1421
Page Range / eLocation ID:
982 to 1002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Differential privacy is a de facto standard for statistical computations over databases that contain private data. Its main and rather surprising strength is to guarantee individual privacy and yet allow for accurate statistical results. Thanks to its mathematical definition, differential privacy is also a natural target for formal analysis. A broad line of work develops and uses logical methods for proving privacy. A more recent and complementary line of work uses statistical methods for finding privacy violations. Although both lines of work are practically successful, they elide the fundamental question of decidability. This paper studies the decidability of differential privacy. We first establish that checking differential privacy is undecidable even if one restricts to programs having a single Boolean input and a single Boolean output. Then, we define a non-trivial class of programs and provide a decision procedure for checking the differential privacy of a program in this class. Our procedure takes as input a program P parametrized by a privacy budget ϵ and either establishes the differential privacy for all possible values of ϵ or generates a counter-example. In addition, our procedure works for both to ϵ-differential privacy and (ϵ, δ)-differential privacy. Technically, the decision procedure is based on a novel and judicious encoding of the semantics of programs in our class into a decidable fragment of the first-order theory of the reals with exponentiation. We implement our procedure and use it for (dis)proving privacy bounds for many well-known examples, including randomized response, histogram, report noisy max and sparse vector. 
    more » « less
  2. Abstract

    We analyze an algorithmic question about immersion theory: for which $m$, $n$, and $CAT=\textbf{Diff}$ or $\textbf{PL}$ is the question of whether an $m$-dimensional $CAT$-manifold is immersible in $\mathbb{R}^{n}$ decidable? We show that PL immersibility is decidable in all cases except for codimension 2, whereas smooth immersibility is decidable in all odd codimensions and undecidable in many even codimensions. As a corollary, we show that the smooth embeddability of an $m$-manifold with boundary in $\mathbb{R}^{n}$ is undecidable when $n-m$ is even and $11m \geq 10n+1$.

     
    more » « less
  3. Etessami, Kousha ; Feige, Uriel ; Puppis, Gabriele (Ed.)
    We give the first pseudorandom generators with sub-linear seed length for the following variants of read-once branching programs (roBPs): 1) First, we show there is an explicit PRG of seed length O(log²(n/ε)log(n)) fooling unbounded-width unordered permutation branching programs with a single accept state, where n is the length of the program. Previously, [Lee-Pyne-Vadhan RANDOM 2022] gave a PRG with seed length Ω(n) for this class. For the ordered case, [Hoza-Pyne-Vadhan ITCS 2021] gave a PRG with seed length Õ(log n ⋅ log 1/ε). 2) Second, we show there is an explicit PRG fooling unbounded-width unordered regular branching programs with a single accept state with seed length Õ(√{n ⋅ log 1/ε} log 1/ε). Previously, no non-trivial PRG (with seed length less than n) was known for this class (even in the ordered setting). For the ordered case, [Bogdanov-Hoza-Prakriya-Pyne CCC 2022] gave an HSG with seed length Õ(log n ⋅ log 1/ε). 3) Third, we show there is an explicit PRG fooling width w adaptive branching programs with seed length O(log n ⋅ log² (nw/ε)). Here, the branching program can choose an input bit to read depending on its current state, while it is guaranteed that on any input x ∈ {0,1}ⁿ, the branching program reads each input bit exactly once. Previously, no PRG with a non-trivial seed length is known for this class. We remark that there are some functions computable by constant-width adaptive branching programs but not by sub-exponential-width unordered branching programs. In terms of techniques, we indeed show that the Forbes-Kelley PRG (with the right parameters) from [Forbes-Kelley FOCS 2018] already fools all variants of roBPs above. Our proof adds several new ideas to the original analysis of Forbes-Kelly, and we believe it further demonstrates the versatility of the Forbes-Kelley PRG. 
    more » « less
  4. Hermenegildo, Manuel ; Morales, José (Ed.)
    Context-free language reachability is an important program analysis framework, but the exact analysis problems can be intractable or undecidable, where CFL-reachability approximates such problems. For the same problem, there could be many over-approximations based on different CFLs \(C_1,\ldots ,C_n\). Suppose the reachability result of each \(C_i\) produces a set \(P_i\) of reachable vertex pairs. Is it possible to achieve better precision than the straightforward intersection \(\bigcap _{i=1}^n P_i\)? This paper gives an affirmative answer: although CFLs are not closed under intersections, in CFL-reachability we can “intersect” graphs. Specifically, we propose mutual refinement to combine different CFL-reachability-based over-approximations. Our key insight is that the standard CFL-reachability algorithm can be slightly modified to trace the edges that contribute to the reachability results of \(C_1\), and \(C_2\)-reachability only need to consider contributing edges of \(C_1\), which can, in turn, trace the edges that contribute to \(C_2\)-reachability, etc. We prove that there exists a unique optimal refinement result (fix-point). Experimental results show that mutual refinement can achieve better precision than the straightforward intersection with reasonable extra cost. 
    more » « less
  5. We study solutions of difference equations in the rings of sequences and, more generally, solutions of equations with a monoid action in the ring of sequences indexed by the monoid. This framework includes, for example, difference equations on grids (for example, standard difference schemes) and difference equations in functions on words. On the universality side, we prove a version of strong Nullstellensatz for such difference equations under the assumption that the cardinality of the ground field is greater than the cardinality of the monoid and construct an example showing that this assumption cannot be omitted. On the undecidability side, we show that the following problems are undecidable: 
    more » « less