Photoexcitation of multichromophoric light harvesting molecules induces a number of intramolecular electronic energy relaxation and redistribution pathways that can ultimately lead to ultrafast exciton self-trapping on a single chromophore unit. We investigate the photoinduced processes that take place on a phenylene-ethynylene dendrimer, consisting of nine equivalent linear chromophore units or branches. meta -Substituted links between branches break the conjugation giving rise to weak couplings between them and to localized excitations. Our nonadiabatic excited-state molecular dynamics simulations reveal that the ultrafast internal conversion process to the lowest excited state is accompanied by an inner → outer inter-branch migration of the exciton due to the entropic bias associated with energetically equivalent conjugated segments. The electronic energy redistribution among chromophore units occurs through several possible pathways in which through-bond transport and through-space exciton hopping mechanisms can be distinguished. Besides, triple bond excitations coincide with the localization of the electronic transition densities, suggesting that the intramolecular energy redistribution is a concerted electronic and vibrational energy transfer process.
more »
« less
Unraveling Direct and Indirect Energy Transfer Pathways in a Light-Harvesting Dendrimer
Light-harvesting and intramolecular energy funneling are fundamental processes in natural photosynthesis. A comprehensive knowledge of the main structural, dynamic, and optical properties that regulate the efficiency of such processes can be deciphered through the study of artificial light-harvesting antennas, capable of mimicking natural systems. Dendrimers are some of the most explored artificial light-harvesting molecules. However, they have to be well-defined and highly branched conjugated structures, creating intramolecular energy gradients that guarantee efficient and unidirectional energy transfer. Herein, we explore the contributions of the different mechanisms responsible for the highly efficient energy funneling in a large, complex poly(phenylene–ethynylene) dendrimer, whose architecture was particularly designed to conduct the initially absorbed photons toward a spatially localized energy sink away from its surface, avoiding its quenching by the environment. For this purpose, the nonradiative photoinduced energy relaxation and redistribution are simulated by using nonadiabatic excited state molecular dynamics. In this way, the two possible direct and indirect pathways for exciton migrations, previously reported by time-resolved spectroscopy, are defined. Our results stimulate future developments of new synthetic dendrimers for applications in molecular-based photonic devices in which an enhancement in the photoemission efficiency can be predicted by changes in the detailed balance between the different intramolecular energy transfer pathways.
more »
« less
- Award ID(s):
- 1802240
- PAR ID:
- 10472663
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 124
- Issue:
- 41
- ISSN:
- 1932-7447
- Page Range / eLocation ID:
- 22383 to 22391
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ability to assemble artificial systems that mimic aspects of natural light‐harvesting functions is fascinating and attractive for materials design. Given the complexity of such a system, a simple design pathway is desirable. Here, we argue that associative phase separation of oppositely charged conjugated polyelectrolytes (CPEs) can provide such a path in an environmentally benign medium: water. We find that complexation between an exciton–donor and acceptor CPE leads to formation of a complex fluid. We interrogate exciton transfer from the donor to the acceptor CPE within the complex fluid and find that transfer is highly efficient. We also find that excess molecular ions can tune the modulus of the inter‐CPE complex fluid. Even at high ion concentrations, CPEs remain complexed with significantly delocalized electronic wavefunctions. Our work lays the rational foundation for complex, tunable aqueous light‐harvesting systems via the intrinsic thermodynamics of associative phase separation.more » « less
-
Abstract The ability to assemble artificial systems that mimic aspects of natural light‐harvesting functions is fascinating and attractive for materials design. Given the complexity of such a system, a simple design pathway is desirable. Here, we argue that associative phase separation of oppositely charged conjugated polyelectrolytes (CPEs) can provide such a path in an environmentally benign medium: water. We find that complexation between an exciton–donor and acceptor CPE leads to formation of a complex fluid. We interrogate exciton transfer from the donor to the acceptor CPE within the complex fluid and find that transfer is highly efficient. We also find that excess molecular ions can tune the modulus of the inter‐CPE complex fluid. Even at high ion concentrations, CPEs remain complexed with significantly delocalized electronic wavefunctions. Our work lays the rational foundation for complex, tunable aqueous light‐harvesting systems via the intrinsic thermodynamics of associative phase separation.more » « less
-
Conspectus: The role of quantum mechanical coherences or coherent superposition states in excited state processes has received considerable attention in the last two decades largely due to advancements in ultrafast laser spectroscopy. These coherence effects hold promise for enhancing the efficiency and robustness of functionally relevant processes, even when confronted with strong energy disorder and environmental fluctuations. Understanding coherence deeply drives us to unravel mechanisms and dynamics controlled by order and synchronization at a quantum mechanical level, envisioning optical control of coherence to enhance functions or create new ones in molecular and material systems. In this frontier, the interplay between electronic and vibrational dynamics, specifically the influence of vibrations in directing electronic dynamics, has emerged as the leading principle. Here, two energetically disparate quantum degrees of freedom work in-sync to dictate the trajectory of an excited state reaction. Moreover, with the vibrational degree being directly related to the structural composition of molecular or material systems, new molecular designs could be inspired by tailoring certain structural elements. In the realm of chemical kinetics, our understanding of the dynamics of chemical transformations is underpinned by fundamental theories such as transition state theory, activated rate theory, and Marcus theory. These theories elucidate reaction rates by considering the energy barriers that must be overcome for reactants to transform into products. Those barriers are surmounted by the stochastic nature of energy gap fluctuations within reacting systems, emphasizing that the reaction coordinate—the pathway from reactants to products—is not rigidly defined by a specific vibrational motion but encompasses a diverse array of molecular motions. While less is known about the involvement of specific intramolecular vibrational modes, their significance in certain cases cannot be overlooked. In this Account, we summarize key experimental findings that offer deeper insights into the complex electronic-vibrational trajectories encompassing excited states afforded from state-of-the-art ultrafast laser spectroscopy in three exemplary processes: photo-induced electron transfer, singlet-triplet intersystem crossing, and intramolecular vibrational energy flow in molecular systems. We delve into rapid decoherence—loss of phase and amplitude correlations—of vibrational coherences along promoter vibrations during a sub-picosecond intersystem crossing dynamics in a series of binuclear platinum complexes. This rapid decoherence illustrates the vibration-driven reactive pathways from Franck-Condon state to the curve crossing region. We also explore the generation of new vibrational coherences induced by impulsive reaction dynamics—rather than by the laser pulse—in these systems, which sheds light on specific energy dissipation pathways and thereby on the progression of the reaction trajectory in the vicinity of the curve crossing on the product side. Another property of vibrational coherences, amplitude, reveals how energy can flow from one vibration to another in the electronic excited state of a terpyridine-molybdenum complex hosting a nonreactive dinitrogen substrate. A slight change in vibrational energy triggers a quasi-resonant interaction, leading to constructive wavepacket interference and ultimately intramolecular vibrational redistribution from a Franck-Condon active terpyridine vibration to dinitrogen stretching vibration, energizing the dinitrogen bond.more » « less
-
Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems.more » « less
An official website of the United States government

