skip to main content


Title: Harnessing quantum emitter rings for efficient energy transport and trapping

Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems.

 
more » « less
Award ID(s):
2016244
PAR ID:
10508183
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optica Publishing
Date Published:
Journal Name:
Optica Quantum
Volume:
2
Issue:
2
ISSN:
2837-6714
Page Range / eLocation ID:
57
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, photon routing has garnered considerable research activity due to its key applications in quantum networking and optical communications. This paper studies the single photon routing scheme in many-emitter disordered chiral waveguide quantum electrodynamics (wQED) ladders. The wQED ladder consists of two one-dimensional lossless waveguides simultaneously and chirally coupled with a chain of dipole-dipole interacting two-level quantum emitters (QEs). In particular, we analyze how a departure from the periodic placement of the QEs due to temperature-induced position disorder can impact the routing probability. This involves analyzing how the interplay between the collective atomic effects originating from the dipole-dipole interaction and disorder in the atomic location leading to single-photon localization can change the routing probabilities. As for some key results, we find that the routing probability exhibits a considerable improvement (more than value) for periodic and disordered wQED ladders when considering lattices consisting of twenty QEs. This robustness of collective effects against spontaneous emission loss and weak disorders is further confirmed by examining the routing efficiency and localization length for up to twenty QE chains. These results may find applications in quantum networking and distributed quantum computing under the realistic conditions of imperfect emitter trappings.

     
    more » « less
  2. Confining light by plasmonic waveguides is promising for miniaturizing optical components, while topological photonics has been explored for robust light localization. Here we propose combining the two approaches into a simple periodically perforated plasmonic waveguide (PPW) design exhibiting robust localization of long-range surface plasmon polaritons. We predict the existence of a topological edge state originating from a quantized topological invariant, and numerically demonstrate the viability of its excitation at telecommunication wavelength using near-field and waveguide-based approaches. Strong modification of the radiative lifetime of dipole emitters by the edge state, and its robustness to disorder, are demonstrated.

     
    more » « less
  3. For over a decade there has been some significant excitement and speculation that quantum effects may be important in the excitation energy transport process in the light harvesting complexes of certain bacteria and algae, in particular via the Fenna–Matthews–Olsen (FMO) complex. Whilst the excitement may have waned somewhat with the realisation that the observed long-lived oscillations in two-dimensional electronic spectra of FMO are probably due to vibronic coherences, it remains a question whether these coherences may play any important role. We review our recent work showing how important the site-to-site variation in coupling between chloroplasts in FMO and their protein scaffold environment is for energy transport in FMO and investigate the role of vibronic modes in this transport. Whilst the effects of vibronic excitations seem modest for FMO, we show that for bilin-based pigment–protein complexes of marine algae, in particular PC645, the site-dependent vibronic excitations seem essential for robust excitation energy transport, which may again open the door for important quantum effects to be important in these photosynthetic complexes. 
    more » « less
  4. Abstract

    Mesoscopic quantum systems exhibit complex many-body quantum phenomena, where interactions between spins and charges give rise to collective modes and topological states. Even simple, non-interacting theories display a rich landscape of energy states—distinct many-particle configurations connected by spin- and energy-dependent transition rates. The ways in which these energy states interact is difficult to characterize or predict, especially in regimes of frustration where many-body effects create a multiply degenerate landscape. Here, we use network science to characterize the complex interconnection patterns of these energy-state transitions. Using an experimentally verified computational model of electronic transport through quantum antidots, we construct networks where nodes represent accessible energy states and edges represent allowed transitions. We find that these networks exhibit Rentian scaling, which is characteristic of efficient transportation systems in computer circuitry, neural circuitry, and human mobility, and can be used to measure the interconnection complexity of a network. We find that the topological complexity of the state transition networks—as measured by Rent’s exponent— correlates with the amount of current flowing through the antidot system. Furthermore, networks corresponding to points of frustration (due, for example, to spin-blockade effects) exhibit an enhanced topological complexity relative to non-frustrated networks. Our results demonstrate that network characterizations of the abstract topological structure of energy landscapes capture salient properties of quantum transport. More broadly, our approach motivates future efforts to use network science to understand the dynamics and control of complex quantum systems.

     
    more » « less
  5. When combined with nanostructured substrates, two-dimensional semiconductors can be engineered with strain to tailor light–matter interactions on the nanoscale. Recently, room-temperature nanoscale exciton localization with controllable wrinkling in 1L-WSe2 was achieved using arrays of gold nanocones. Here, the characterization of quantum dot-like states and single-photon emitters in the 1L-WSe2/nanocone system is reported. The nanocones induce a wide range of strains, and as a result, a diverse ensemble of narrowband, potential single-photon emitters is observed. The distribution of emitter energies reveals that most reside in two spectrally isolated bands, leaving a less populated intermediate band that is spectrally isolated from the ensembles. The spectral isolation is advantageous for high-purity quantum light emitters, and anti-bunched emission from one of these states is confirmed up to 25 K. Although the spatial distribution of strain is expected to influence the orientation of the transition dipoles of the emitters, multimodal emission polarization anisotropy and atomic force microscopy reveal that the macroscopic orientation of the wrinkles is not a good predictor of dipole orientation. Finally, the emission is found to change with thermal cycling from 4 to 290 K and back to 4 K, highlighting the need to control factors such as temperature-induced strain to enhance the robustness of this quantum emitter platform. The initial characterization here shows that controlled nanowrinkles of 1L-WSe2 generate quantum light in addition to uncovering potential challenges that need to be addressed for their adoption into quantum photonic technologies. 
    more » « less