skip to main content


Title: DNA methylation profiling of a cnidarian-algal symbiosis using nanopore sequencing
Abstract

Symbiosis with protists is common among cnidarians such as corals and sea anemones and is associated with homeostatic and phenotypic changes in the host that could have epigenetic underpinnings, such as methylation of CpG dinucleotides. We leveraged the sensitivity to base modifications of nanopore sequencing to probe the effect of symbiosis with the chlorophyte Elliptochloris marina on methylation in the sea anemone Anthopleura elegantissima. We first validated the approach by comparison of nanopore-derived methylation levels with CpG depletion analysis of a published transcriptome, finding that high methylation levels are associated with CpG depletion as expected. Next, using reads generated exclusively from aposymbiotic anemones, a largely complete draft genome comprising 243 Mb was assembled. Reads from aposymbiotic and symbiotic sea anemones were then mapped to this genome and assessed for methylation using the program Nanopolish, which detects signal disruptions from base modifications as they pass through the nanopore. Based on assessment of 452,841 CpGs for which there was adequate read coverage (approximately 8% of the CpGs in the genome), symbiosis with E. marina was, surprisingly, associated with only subtle changes in the host methylome. However, we did identify one extended genomic region with consistently higher methylation among symbiotic individuals. The region was associated with a DNA polymerase zeta that is noted for its role in translesion synthesis, which opens interesting questions about the biology of this symbiosis. Our study highlights the power and relative simplicity of nanopore sequencing for studies of nucleic acid base modifications in non-model species.

 
more » « less
Award ID(s):
1947838
NSF-PAR ID:
10472773
Author(s) / Creator(s):
; ;
Editor(s):
Andrews, B
Publisher / Repository:
Oxford
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
11
Issue:
7
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemoneExaiptasia pallida(Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, ‘defence’ responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways—including NF-κB—does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands.

     
    more » « less
  2. Loss of endosymbiotic algae (“bleaching”) under heat stress has become a major problem for reef-building corals worldwide. To identify genes that might be involved in triggering or executing bleaching, or in protecting corals from it, we used RNAseq to analyze gene-expression changes during heat stress in a coral relative, the sea anemone Aiptasia. We identified >500 genes that showed rapid and extensive up-regulation upon temperature increase. These genes fell into two clusters. In both clusters, most genes showed similar expression patterns in symbiotic and aposymbiotic anemones, suggesting that this early stress response is largely independent of the symbiosis. Cluster I was highly enriched for genes involved in innate immunity and apoptosis, and most transcript levels returned to baseline many hours before bleaching was first detected, raising doubts about their possible roles in this process. Cluster II was highly enriched for genes involved in protein folding, and most transcript levels returned more slowly to baseline, so that roles in either promoting or preventing bleaching seem plausible. Many of the genes in clusters I and II appear to be targets of the transcription factors NFκB and HSF1, respectively. We also examined the behavior of 337 genes whose much higher levels of expression in symbiotic than aposymbiotic anemones in the absence of stress suggest that they are important for the symbiosis. Unexpectedly, in many cases, these expression levels declined precipitously long before bleaching itself was evident, suggesting that loss of expression of symbiosis-supporting genes may be involved in triggering bleaching.

     
    more » « less
  3. Abstract

    Germline copy number variants (CNVs) and single-nucleotide polymorphisms (SNPs) form the basis of inter-individual genetic variation. Although the phenotypic effects of SNPs have been extensively investigated, the effects of CNVs is relatively less understood. To better characterize mechanisms by which CNVs affect cellular phenotype, we tested their association with variable CpG methylation in a genome-wide manner. Using paired CNV and methylation data from the 1000 genomes and HapMap projects, we identified genome-wide associations by methylation quantitative trait locus (mQTL) analysis. We found individual CNVs being associated with methylation of multiple CpGs and vice versa. CNV-associated methylation changes were correlated with gene expression. CNV-mQTLs were enriched for regulatory regions, transcription factor-binding sites (TFBSs), and were involved in long-range physical interactions with associated CpGs. Some CNV-mQTLs were associated with methylation of imprinted genes. Several CNV-mQTLs and/or associated genes were among those previously reported by genome-wide association studies (GWASs). We demonstrate that germline CNVs in the genome are associated with CpG methylation. Our findings suggest that structural variation together with methylation may affect cellular phenotype.

     
    more » « less
  4. Abstract

    There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome‐wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base‐pair resolution—whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl‐CpG binding domain bisulfite sequencing (MBDBS)—using multiple individuals from two reef‐building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation inMontipora capitata(11.4%) than the more sensitivePocillopora acuta(2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross‐species comparisons. As genome‐wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.

     
    more » « less
  5. Climate change threatens symbiotic cnidarians’ survival by causing photosymbiosis breakdown in a process known as bleaching. Direct effects of temperature on cnidarian host physiology remain difficult to describe because heatwaves depress symbiont performance, leading to host stress and starvation. The symbiotic sea anemone Exaiptasia diaphana provides an opportune system to disentangle direct vs. indirect heat effects on the host, since it can survive indefinitely without symbionts. We tested the hypothesis that heat directly impairs cnidarian physiology by comparing symbiotic and aposymbiotic individuals of two laboratory subpopulations of a commonly used clonal strain of E. diaphana, CC7. We exposed anemones to a range of temperatures (ambient, +2°C, +4°C, +6°C) for 15–18 days, then measured their symbiont population densities, autotrophic carbon assimilation and translocation, photosynthesis, respiration, and host intracellular pH (pHi). Symbiotic anemones from the two subpopulations differed in size and symbiont density and exhibited distinct heat stress responses, highlighting the importance of acclimation to different laboratory conditions. Specifically, the cohort with higher initial symbiont densities experienced dose-dependent symbiont loss with increasing temperature and a corresponding decline in host photosynthate accumulation. In contrast, the cohort with lower initial symbiont densities did not lose symbionts or assimilate less photosynthate when heated, similar to the response of aposymbiotic anemones. However, anemone pHi decreased at higher temperatures regardless of cohort, symbiont presence, or photosynthate translocation, indicating that heat consistently disrupts cnidarian acid-base homeostasis independent of symbiotic status or mutualism breakdown. Thus, pH regulation may be a critical vulnerability for cnidarians in a changing climate.

     
    more » « less