skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1947838

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although the use of airborne molecules as infochemicals is common in terrestrial plants, it has not been shown to occur in an ecologically relevant context in marine seaweeds. Like terrestrial plants, intertidal plants spend part of their lives emersed at low tide and release volatile organic compounds (VOCs) into the air when they are grazed or physiologically stressed. We hypothesized seaweeds could use airborne VOCs as infochemicals and respond to them by upregulating a keystone defensive metabolite, dimethylsulfoniopropionate (DMSP). We conducted laboratory and field experiments in whichUlva fenestratawas exposed to airborne dimethyl sulfide (DMS), a volatile antiherbivore and antioxidant metabolite released when the seaweed is grazed or physiologically stressed. In the laboratory,U. fenestrataexposed to DMS had 43–48% higher DMSP concentrations, relative to controls, 6–9 days after exposure. In the field,U. fenestrata1 m downwind of DMS emitters had 19% higher DMSP concentrations than upwind seaweeds after 11 days. To our knowledge, this is the first demonstration of a marine plant using an airborne molecule released when damaged to elicit defensive responses. Our study suggests that the ability to detect airborne compounds has evolved multiple times or before the divergence of terrestrial plants and green algae. 
    more » « less
  2. Andrews, B (Ed.)
    Abstract Symbiosis with protists is common among cnidarians such as corals and sea anemones and is associated with homeostatic and phenotypic changes in the host that could have epigenetic underpinnings, such as methylation of CpG dinucleotides. We leveraged the sensitivity to base modifications of nanopore sequencing to probe the effect of symbiosis with the chlorophyte Elliptochloris marina on methylation in the sea anemone Anthopleura elegantissima. We first validated the approach by comparison of nanopore-derived methylation levels with CpG depletion analysis of a published transcriptome, finding that high methylation levels are associated with CpG depletion as expected. Next, using reads generated exclusively from aposymbiotic anemones, a largely complete draft genome comprising 243 Mb was assembled. Reads from aposymbiotic and symbiotic sea anemones were then mapped to this genome and assessed for methylation using the program Nanopolish, which detects signal disruptions from base modifications as they pass through the nanopore. Based on assessment of 452,841 CpGs for which there was adequate read coverage (approximately 8% of the CpGs in the genome), symbiosis with E. marina was, surprisingly, associated with only subtle changes in the host methylome. However, we did identify one extended genomic region with consistently higher methylation among symbiotic individuals. The region was associated with a DNA polymerase zeta that is noted for its role in translesion synthesis, which opens interesting questions about the biology of this symbiosis. Our study highlights the power and relative simplicity of nanopore sequencing for studies of nucleic acid base modifications in non-model species. 
    more » « less