skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing Playful Intelligent Tutoring Software to Support Engaging and Effective Algebra Learning
In designing learning technology, it is critical that the technology supports both learning and engagement of students. However, achieving both aspects in a single technology design is challenging. We report on the design and evaluation of Gwynnette, intelligent tutoring software for early algebra. Gwynnette was deliberately designed to enhance students’ algebra learning and engagement, integrating several playful interaction and gamification features such as drag-and-drop interactions, an alien character, and sound effects. A virtual classroom experiment with 60 students showed that the system significantly enhanced both engagement and conceptual learning in early algebra, compared to the older version of the same software. Log data analyses gave insights into how the design might have affected the out-comes. This study demonstrates that a deliberate design of learning technology can help students learn and engage well in an unpopular subject such as algebra, a challenging dual goal in designing learning technologies.  more » « less
Award ID(s):
1760922
PAR ID:
10472799
Author(s) / Creator(s):
; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
Hilliger, I; Muñoz-Merino, P. J.; De Laet, T.; Ortega-Arranz, A.; Farrell, T.
Publisher / Repository:
Proceedings of ECTEL 2022: the 17th European Conference on Technology-Enhanced Learning
Date Published:
Journal Name:
Proceedings of ECTEL 2022: the 17th European Conference on Technology-Enhanced Learning
Edition / Version:
18
Page Range / eLocation ID:
258-271
Subject(s) / Keyword(s):
Intelligent Tutoring System, Engagement, Gamification, Algebra
Format(s):
Medium: X
Location:
Cham
Sponsoring Org:
National Science Foundation
More Like this
  1. Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task. We challenged students to design a house that consumed zero net energy as part of an introductory engineering technology undergraduate course. Using data from 128 students, along with the scikit-learn Python machine learning library, we tested our models using both total counts of design actions and sequences of design actions as inputs. We found that our models using early design sequence actions are particularly valuable for prediction. Our logistic regression model achieved a >60% chance of predicting if a student would succeed in designing a zero net energy house. Our results suggest that it would be feasible for Aladdin to provide useful feedback to students when they are approximately halfway through their design. Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning. 
    more » « less
  2. Undergraduate research experiences are a promising way to broaden participation in computer architecture research and have been shown to improve student learning, engagement, and retention. These outcomes can be more profound and lasting if students experience research early. However, there are many barriers to early research in computer architecture some of which include the gap between pedagogy and research, the lower emphasis on hardware design compared to software in first-year courses, and the lack of online resources. We propose lowering these barriers through a methodical approach by involving undergraduates in early research and by creating freely available and innovative educational tools for designing hardware. We present the experience of a team of undergraduate students with research over one academic year using a Python hardware description language, PyRTL. PyRTL was developed to enable early entry into digital design. Its overarching goals are simplicity, usabil- ity, clarity, and extensibility, a stark contrast to traditional languages like Verilog and VHDL that have a steep learning curve. Instead of introducing traditional languages early in the undergraduate curriculum, PyRTL takes the opposite approach, which is to build on what students already know well: a popular programming language (Python), software design patterns, and software engineering principles. The students conducted their research in the context of the Early Research Scholars Program (ERSP), a program designed to expand access to research among women and underrepresented minority students in their second year through a well-designed support structure. 
    more » « less
  3. null (Ed.)
    Abstract Engineering students need to spend time engaging in mathematical modeling tasks to reinforce their learning of mathematics through its application to authentic problems and real world design situations. Technological tools and resources can support this kind of learning engagement. We produced an online module that develops students’ mathematical modeling skills while developing knowledge of the fundamentals of rainfall-runoff processes and engineering design. This study examined how 251 students at two United States universities perceived mathematical modeling as implemented through the online module over a 5-year period. We found, subject to the limitation that these are perceptions from not all students, that: (a) the module allowed students to be a part of the modeling process; (b) using technology, such as modeling software and online databases, in the module helped students to understand what they were doing in mathematical modeling; (c) using the technology in the module helped students to develop their skill set; and (d) difficulties with the technology and/or the modeling decisions they had to make in the module activities were in some cases barriers that interfered with students’ ability to learn. We advocate for instructors to create modules that: (a) are situated within a real-world context, requiring students to model mathematically to solve an authentic problem; (b) take advantage of digital tools used by engineers to support students’ development of the mathematical and engineering skills needed in the workforce; and (c) use student feedback to guide module revisions. 
    more » « less
  4. This convergent mixed method study investigates learner engagement during a blended, transmedia curriculum called CryptoComics which is designed to teach 3rd-5th graders about cryptology and cybersecurity. Curriculum design is presented through the lens of four engagement facilitators: (1) anchoring the curriculum with a comic book, (2) blending digital and unplugged media, (3) supporting situational interest via a transmedia narrative and (4) designing for social-cultural relevance. Latent profile analysis is used to develop profiles of learner engagement using quantitative indicators of cognitive and emotional engagement collected across 204 students at 13 implementation sites in the Eastern U.S. Qualitative indicators of engagement include teacher weekly check-ins submitted by 17 teachers working at the 13 implementation sites, student interviews, and classroom observations of 26 students participating in the curriculum at two local sites. Quantitative and qualitative results converge to suggest the majority of the students participating in the curriculum were highly engaged cognitively and emotionally. Qualitative data (1) suggest some third graders may be less cognitively engaged due to challenging content, (2) provide evidence for how design of the blended, transmedia curriculum supported, and some cases hindered, engagement, (3) highlight the importance of transitions between blended learning components in facilitating engagement and (4) uncover questions regarding one of the quantitative measures selected as an indicator of cognitive engagement. 
    more » « less
  5. This project focuses on developing three technical courses for lower-division electrical engineering education to bridge the gap between Career and Technical Education (CTE) programs in high schools, engineering programs at community colleges, and lower-division electrical engineering courses at four-year universities. The primary goal of the project is to create a seamless academic transition by providing electrical engineering students with the necessary foundational knowledge in analog and digital systems, as well as hands-on experience with laboratory measurement tools. The courses utilize industry-relevant technologies such as LabView, MATLAB, PLC programming, and ready-to-use microcontroller boards to facilitate experiential learning at lower division courses. Early exposure to these tools and systems equips students with practical skills that not only prepare them for further academic pursuits but also align them with workforce demands in industries that increasingly rely on automation, data acquisition, and real-time system controls. The success of this project is attributed to its emphasis on design and project-based learning, which fosters critical thinking and problem-solving skills essential for real-world applications. By integrating design principles early in students' educational experiences, they are better prepared to tackle complex engineering problems as they progress through their academic careers. The use of project-based learning allows students to apply theoretical knowledge to tangible, real-world projects, improving their engagement and deepening their understanding of electrical engineering concepts. Practical tools like MATLAB and microcontroller boards in entry-level courses not only motivates students to pursue engineering but also increases retention rates in STEM fields, a key metric for academic success. This project is also advocating for early exposure to hands-on technical skills as a way to better prepare students for the workforce. By focusing on skill development in both CTE programs and early college courses, students are equipped with a stronger foundation for electrical engineering careers and are more likely to succeed in upper-division coursework and beyond. The seamless integration of high school, community college, and university programs ensures that students acquire both the theoretical and practical skills necessary to be successful in an increasingly technology-driven economy. Moreover, the project's use of industry-standard tools, coupled with its focus on bridging academic gaps, provides a sustainable model for developing a skilled and versatile workforce, addressing the growing need for engineers proficient in both design and system implementation. 
    more » « less