skip to main content


Title: Mutator transposon insertions within maize genes often provide a novel outward reading promoter
Abstract

The highly active family of Mutator (Mu) DNA transposons has been widely used for forward and reverse genetics in maize. There are examples of Mu-suppressible alleles that result in conditional phenotypic effects based on the activity of Mu. Phenotypes from these Mu-suppressible mutations are observed in Mu-active genetic backgrounds, but absent when Mu activity is lost. For some Mu-suppressible alleles, phenotypic suppression likely results from an outward-reading promoter within Mu that is only active when the autonomous Mu element is silenced or lost. We isolated 35 Mu alleles from the UniformMu population that represent insertions in 24 different genes. Most of these mutant alleles are due to insertions within gene coding sequences, but several 5′ UTR and intron insertions were included. RNA-seq and de novo transcript assembly were utilized to document the transcripts produced from 33 of these Mu insertion alleles. For 20 of the 33 alleles, there was evidence of transcripts initiating within the Mu sequence reading through the gene. This outward-reading promoter activity was detected in multiple types of Mu elements and does not depend on the orientation of Mu. Expression analyses of Mu-initiated transcripts revealed the Mu promoter often provides gene expression levels and patterns that are similar to the wild-type gene. These results suggest the Mu promoter may represent a minimal promoter that can respond to gene cis-regulatory elements. Findings from this study have implications for maize researchers using the UniformMu population, and more broadly highlight a strategy for transposons to co-exist with their host.

 
more » « less
Award ID(s):
1733633
NSF-PAR ID:
10472858
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
GENETICS
Volume:
225
Issue:
3
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Genomic imprinting is an epigenetic phenomenon in which differential allele expression occurs in a parent-of-origin-dependent manner. Imprinting in plants is tightly linked to transposable elements (TEs), and it has been hypothesized that genomic imprinting may be a consequence of demethylation of TEs. Here, we performed high-throughput sequencing of ribonucleic acids from four maize (Zea mays) endosperms that segregated newly silenced Mutator (Mu) transposons and identified 110 paternally expressed imprinted genes (PEGs) and 139 maternally expressed imprinted genes (MEGs). Additionally, two potentially novel paternally suppressed MEGs are associated with de novo Mu insertions. In addition, we find evidence for parent-of-origin effects on expression of 407 conserved noncoding sequences (CNSs) in maize endosperm. The imprinted CNSs are largely localized within genic regions and near genes, but the imprinting status of the CNSs are largely independent of their associated genes. Both imprinted CNSs and PEGs have been subject to relaxed selection. However, our data suggest that although MEGs were already subject to a higher mutation rate prior to their being imprinted, imprinting may be the cause of the relaxed selection of PEGs. In addition, although DNA methylation is lower in the maternal alleles of both the maternally and paternally expressed CNSs (mat and pat CNSs), the difference between the two alleles in H3K27me3 levels was only observed in pat CNSs. Together, our findings point to the importance of both transposons and CNSs in genomic imprinting in maize.

     
    more » « less
  2. Nearly all eukaryotes carry DNA transposons of the Robertson’s Mutator ( Mu ) superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of MuDR transposase genes and TIRs. To address the extent of this relationship and its impact, we compared separate phylogenies of TIRs and MuDR gene sequences from Mu elements in the maize genome. Five major clades were identified. As expected, most Mu elements were bound by highly similar TIRs from the same clade (homomorphic type). However, a subset of elements contained dissimilar TIRs derived from divergent clades. These “heteromorphs” typically occurred in multiple copies indicating active transposition in the genome. In addition, analysis of internal sequences showed that exchanges between elements having divergent TIRs produced new mudra and mudrb gene combinations. In several instances, TIR homomorphs had been regenerated within a heteromorph clade with retention of distinctive internal MuDR sequence combinations. Results reveal that recombination between divergent clades facilitates independent evolution of transposase ( mudra ), transposase-binding targets (TIRs), and capacity for insertion ( mudrb ) of active Mu elements. This mechanism would be enhanced by the preference of Mu insertions for recombination-rich regions near the 5′ ends of genes. We suggest that cycles of recombination give rise to alternating homo- and heteromorph forms that enhance the diversity on which selection for Mu fitness can operate. 
    more » « less
  3. SUMMARY

    The DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs) are crucial for RNA‐directed DNA methylation (RdDM) in plant species.Setaria viridisis a model monocot species with a relatively compact genome that has limited transposable element (TE) content. CRISPR‐based genome editing approaches were used to create loss‐of‐function alleles for the two putative functional DRM genes inS. viridisto probe the role of RdDM. Double mutant (drm1ab)plants exhibit some morphological abnormalities but are fully viable. Whole‐genome methylation profiling provided evidence for the widespread loss of methylation in CHH sequence contexts, particularly in regions with high CHH methylation in wild‐type plants. Evidence was also found for the locus‐specific loss of CG and CHG methylation, even in some regions that lack CHH methylation. Transcriptome profiling identified genes with altered expression in thedrm1abmutants. However, the majority of genes with high levels of CHH methylation directly surrounding the transcription start site or in nearby promoter regions in wild‐type plants do not have altered expression in thedrm1abmutant, even when this methylation is lost, suggesting limited regulation of gene expression by RdDM. Detailed analysis of the expression of TEs identified several transposons that are transcriptionally activated indrm1abmutants. These transposons are likely to require active RdDM for the maintenance of transcriptional repression.

     
    more » « less
  4. Abstract

    Protein translation is tightly and precisely controlled by multiple mechanisms including upstream open reading frames (uORFs), but the origins of uORFs and their role in maize are largely unexplored. In this study, an active transposition event was identified during the propagation of maize inbred line B73. The transposon, which was named BTA for ‘B73 active transposable element hAT’, creates a novel dosage-dependent hypomorphic allele of the hexose transporter gene ZmSWEET4c through insertion within the coding sequence in the first exon, and results in reduced kernel size. The BTA insertion does not affect transcript abundance but reduces protein abundance of ZmSWEET4c, probably through the introduction of a uORF. Furthermore, the introduction of BTA sequence in the exon of other genes can regulate translation efficiency without affecting their mRNA levels. A transposon capture assay revealed 79 novel insertions for BTA and BTA-like elements. These insertion sites have typical euchromatin features, including low levels of DNA methylation and high levels of H3K27ac. A putative autonomous element that mobilizes BTA and BTA-like elements was identified. Together, our results suggest a transposon-based origin of uORFs and document a new role for transposable elements to influence protein abundance and phenotypic diversity by affecting the translation rate.

     
    more » « less
  5. Storz, Gisela (Ed.)
    ABSTRACT Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes and other organisms to new niches. Comparative genomics can be used to infer rewiring of regulatory architecture based on large effect mutations like loss or acquisition of transcription factors but may be insufficient to identify small changes in noncoding, intergenic DNA sequence of regulatory elements that drive phenotypic divergence. In human-derived Vibrio cholerae , the response to distinct chemical cues triggers production of multiple transcription factors that can regulate the type VI secretion system (T6), a broadly distributed weapon for interbacterial competition. However, to date, the signaling network remains poorly understood because no regulatory element has been identified for the major T6 locus. Here we identify a conserved cis -acting single nucleotide polymorphism (SNP) controlling T6 transcription and activity. Sequence alignment of the T6 regulatory region from diverse V. cholerae strains revealed conservation of the SNP that we rewired to interconvert V. cholerae T6 activity between chitin-inducible and constitutive states. This study supports a model of pathogen evolution through a noncoding cis -regulatory mutation and preexisting, active transcription factors that confers a different fitness advantage to tightly regulated strains inside a human host and unfettered strains adapted to environmental niches. IMPORTANCE Organisms sense external cues with regulatory circuits that trigger the production of transcription factors, which bind specific DNA sequences at promoters (“ cis ” regulatory elements) to activate target genes. Mutations of transcription factors or their regulatory elements create phenotypic diversity, allowing exploitation of new niches. Waterborne pathogen Vibrio cholerae encodes the type VI secretion system “nanoweapon” to kill competitor cells when activated. Despite identification of several transcription factors, no regulatory element has been identified in the promoter of the major type VI locus, to date. Combining phenotypic, genetic, and genomic analysis of diverse V. cholerae strains, we discovered a single nucleotide polymorphism in the type VI promoter that switches its killing activity between a constitutive state beneficial outside hosts and an inducible state for constraint in a host. Our results support a role for noncoding DNA in adaptation of this pathogen. 
    more » « less