We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (
While secondary mass inferences based on single-lined spectroscopic binary (SB1) solutions are subject to
- PAR ID:
- 10472903
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 166
- Issue:
- 6
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 225
- Size(s):
- Article No. 225
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ρ = 0.80 g cm−3) with a planetary radius of 9.7 ± 0.5R ⊕(0.87 ± 0.04R Jup) and a planetary mass of (0.42 ). It has an orbital period of days and an orbital eccentricity of . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R ⊕). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats. -
Abstract Dynamical masses of giant planets and brown dwarfs are critical tools for empirically validating substellar evolutionary models and their underlying assumptions. We present a measurement of the dynamical mass and an updated orbit of PZ Tel B, a young brown dwarf companion orbiting a late-G member of the
β Pic moving group. PZ Tel A exhibits an astrometric acceleration between Hipparcos and Gaia EDR3, which enables the direct determination of the companion’s mass. We have also acquired new Keck/NIRC2 adaptive optics imaging of the system, which increases the total baseline of relative astrometry to 15 yr. Our joint orbit fit yields a dynamical mass of , semimajor axis of , eccentricity of , and inclination of . The companion’s mass is consistent within 1.1σ of predictions from four grids of hot-start evolutionary models. The joint orbit fit also indicates a more modest eccentricity of PZ Tel B than previous results. PZ Tel joins a small number of young (<200 Myr) systems with benchmark substellar companions that have dynamical masses and precise ages from moving group membership. -
Abstract We present and confirm TOI-1751 b, a transiting sub-Neptune orbiting a slightly evolved, solar-type, metal-poor star (
T eff= 5996 ± 110 K, ,V = 9.3 mag, [Fe/H] = −0.40 ± 0.06 dex) every 37.47 days. We use TESS photometry to measure a planet radius of . We also use both Keck/HIRES and APF/Levy radial velocities (RV) to derive a planet mass of , and thus a planet density of 3.6 ± 0.9 g cm−3. There is also a long-period (∼400 days) signal that is observed in only the Keck/HIRES data. We conclude that this long-period signal is not planetary in nature and is likely due to the window function of the Keck/HIRES observations. This highlights the role of complementary observations from multiple observatories to identify and exclude aliases in RV data. Finally, we investigate the potential compositions of this planet, including rocky and water-rich solutions, as well as theoretical irradiated ocean models. TOI-1751 b is a warm sub-Neptune with an equilibrium temperature of ∼820 K. As TOI-1751 is a metal-poor star, TOI-1751 b may have formed in a water-enriched formation environment. We thus favor a volatile-rich interior composition for this planet. -
Abstract We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (
β p= 0.25) collisionless ion–electron shocks with mass ratiom i/m e= 200, fast Mach number –4, and upstream magnetic field angleθ Bn= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, -parallel electric potential jump, ΔB ϕ ∥, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ ∥, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ ∥in our low-β pshocks. We further focus on twoθ Bn= 65° shocks: a ( ) case with a long, 30d iprecursor of whistler waves along , and a ( ) case with a shorter, 5d iprecursor of whistlers oblique to both and ;B d iis the ion skin depth. Within the precursors,ϕ ∥has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the ,θ Bn= 65° case,ϕ ∥shows a weak dependence on the electron plasma-to-cyclotron frequency ratioω pe/Ωce, andϕ ∥decreases by a factor of 2 asm i/m eis raised to the true proton–electron value of 1836. -
Abstract We report the discovery of two transiting planets around the bright (
V = 9.9 mag) main-sequence F7 star TOI-1670 by the Transiting Exoplanet Survey Satellite. TOI-1670 b is a sub-Neptune (R ⊕) on a 10.9 day orbit, and TOI-1670 c is a warm Jupiter (R Jup) on a 40.7 day orbit. Using radial velocity observations gathered with the Tull Coudé Spectrograph on the Harlan J. Smith telescope and HARPS-N on the Telescopio Nazionale Galileo, we find a planet mass ofM Jupfor the outer warm Jupiter, implying a mean density of g cm−3. The inner sub-Neptune is undetected in our radial velocity data (M b< 0.13M Jupat the 99% confidence level). Multiplanet systems like TOI-1670 hosting an outer warm Jupiter on a nearly circular orbit ( ) and one or more inner coplanar planets are more consistent with “gentle” formation mechanisms such as disk migration or in situ formation rather than high-eccentricity migration. Of the 11 known systems with a warm Jupiter and a smaller inner companion, eight (73%) are near a low-order mean-motion resonance, which can be a signature of migration. TOI-1670 joins two other systems (27% of this subsample) with period commensurabilities greater than 3, a common feature of in situ formation or halted inward migration. TOI-1670 and the handful of similar systems support a diversity of formation pathways for warm Jupiters.