skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
Abstract. Arctic rain on snow (ROS) deposits liquid water onto existing snowpacks. Upon refreezing, this can form icy crusts at the surface or within the snowpack. By altering radar backscatter and microwave emissivity, ROS over sea ice can influence the accuracy of sea ice variables retrieved from satellite radar altimetry, scatterometers, and passive microwave radiometers. During the Arctic Ocean MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, there was an unprecedented opportunity to observe a ROS event using in situ active and passive microwave instruments similar to those deployed on satellite platforms. During liquid water accumulation in the snowpack from rain and increased melt, there was a 4-fold decrease in radar energy returned at Ku- and Ka-bands. After the snowpack refroze and ice layers formed, this decrease was followed by a 6-fold increase in returned energy. Besides altering the radar backscatter, analysis of the returned waveforms shows the waveform shape changed in response to rain and refreezing. Microwave emissivity at 19 and 89 GHz increased with increasing liquid water content and decreased as the snowpack refroze, yet subsequent ice layers altered the polarization difference. Corresponding analysis of the CryoSat-2 waveform shape and backscatter as well as AMSR2 brightness temperatures further shows that the rain and refreeze were significant enough to impact satellite returns. Our analysis provides the first detailed in situ analysis of the impacts of ROS and subsequent refreezing on both active and passive microwave observations, providing important baseline knowledge for detecting ROS over sea ice and assessing their impacts on satellite-derived sea ice variables.  more » « less
Award ID(s):
1724551
PAR ID:
10472932
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
The Cryosphere
Date Published:
Journal Name:
The Cryosphere
Volume:
16
Issue:
10
ISSN:
1994-0424
Page Range / eLocation ID:
4223 to 4250
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Predicting winter flooding is critical to protecting people and securing water resources in California’s Sierra Nevada. Rain-on-snow (ROS) events are a common cause of widespread flooding and are expected to increase in both frequency and magnitude with anthropogenic climate change in this region. ROS flood severity depends on terrestrial water input (TWI), the sum of rain and snowmelt that reaches the land surface. However, an incomplete understanding of the processes that control the flow and refreezing of liquid water in the snowpack limits flood prediction by operational and research models. We examine how antecedent snowpack conditions alter TWI during 71 ROS events between water years 1981 and 2019. Observations across a 500-m elevation gradient from the Independence Creek catchment were input into SNOWPACK, a one-dimensional, physically based snow model, initiated with the Richards equation and calibrated with collocated snow pillow observations. We compare observed “historical” and “scenario” ROS events, where we hold meteorologic conditions constant but vary snowpack conditions. Snowpack variables include cold content, snow density, liquid water content, and snow water equivalent. Results indicate that historical events with TWI > rain are associated with the largest observed streamflows. A multiple linear regression analysis of scenario events suggests that TWI is sensitive to interactions between snow density and cold content, with denser (>0.30 g cm−3) and colder (<−0.3 MJ of cold content) snowpacks retaining >50 mm of TWI. These results highlight the importance of hydraulic limitations in dense snowpacks and energy limitations in warm snowpacks for retaining liquid water that would otherwise be available as TWI for flooding. Significance StatementThe purpose of this study is to understand how the snowpack modulates quantities of water that reach the land surface during rain-on-snow (ROS) events. While the amount of near-term storm rainfall is reasonably predicted by meteorologists, major floods associated with ROS are more difficult to predict and are expected to increase in frequency. Our key findings are that liquid water inputs to the land surface vary with snowpack characteristics, and although many hydrologic models incorporate snowpack cold content and density to some degree, the complexity of ROS events justifies the need for additional observations to improve operational forecasting model results. Our findings suggest additional comparisons between existing forecasting models and those that physically represent the snowpack, as well as field-based observations of cold content and density and liquid water content, would be useful follow-up investigations. 
    more » « less
  2. Abstract. Wind-driven redistribution of snow on sea ice alters itstopography and microstructure, yet the impact of these processes on radarsignatures is poorly understood. Here, we examine the effects of snowredistribution over Arctic sea ice on radar waveforms and backscattersignatures obtained from a surface-based, fully polarimetric Ka- and Ku-bandradar at incidence angles between 0∘ (nadir) and 50∘.Two wind events in November 2019 during the Multidisciplinary drifting Observatory forthe Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- andKu-band radar waveforms and backscatter coefficients at nadir are observed,coincident with surface topography changes measured by a terrestrial laserscanner. At both frequencies, redistribution caused snow densification atthe surface and the uppermost layers, increasing the scattering at theair–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previousair–snow interfaces, buried beneath newly deposited snow. The additionalscattering from previous air–snow interfaces could therefore affect therange retrieved from Ka- and Ku-band satellite altimeters. With increasingincidence angles, the relative scattering contribution of the air–snowinterface decreases, and the snow–sea ice interface scattering increases.Relative to pre-wind event conditions, azimuthally averaged backscatter atnadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scanarea at all incidence angles and polarizations, in response to increasingwind speed and changes in wind direction. Our results show that snowredistribution and wind compaction need to be accounted for to interpretairborne and satellite radar measurements of snow-covered sea ice. 
    more » « less
  3. Abstract The discovery of a polarimetric radar signature indicative of hydrometeor refreezing has shown promise in its utility to identify periods of ice pellet production. Uniquely characterized well below the melting layer by locally enhanced values of differential reflectivity ( Z DR ) within a layer of decreasing radar reflectivity factor at horizontal polarization ( Z H ), the signature has been documented in cases where hydrometeors were completely melted prior to refreezing. However, polarimetric radar features associated with the refreezing of partially melted hydrometeors have not been examined as rigorously in either an observational or microphysical modeling framework. Here, polarimetric radar data—including vertically pointing Doppler spectral data from the Ka-band Scanning Polarimetric Radar (KASPR)—are analyzed for an ice pellets and rain mixture event where the ice pellets formed via the refreezing of partially melted hydrometeors. Observations show that no such distinct localized Z DR enhancement is present, and that values instead decrease directly beneath enhanced values associated with melting. A simplified, explicit bin microphysical model is then developed to simulate the refreezing of partially melted hydrometeors, and coupled to a polarimetric radar forward operator to examine the impacts of such refreezing on simulated radar variables. Simulated vertical profiles of polarimetric radar variables and Doppler spectra have similar features to observations, and confirm that a Z DR enhancement is not produced. This suggests the possibility of two distinct polarimetric features of hydrometeor refreezing: ones associated with refreezing of completely melted hydrometeors, and those associated with refreezing of partially melted hydrometeors. Significance Statement There exist two pathways for the formation of ice pellets: refreezing of fully melted hydrometeors, and refreezing of partially melted hydrometeors. A polarimetric radar signature indicative of fully melted hydrometeor refreezing has been extensively documented in the past, yet no study has documented the refreezing of partially melted hydrometeors. Here, observations and idealized modeling simulations are presented to show different polarimetric radar features associated with partially melted hydrometeor refreezing. The distinction in polarimetric features may be beneficial to identifying layers of supercooled liquid drops within transitional winter storms. 
    more » « less
  4. Abstract. Surface melting on the Antarctic Ice Sheet has been monitored by satellite microwave radiometry for over 40 years. Despite this long perspective, our understanding of the microwave emission from wet snow is still limited, preventing the full exploitation of these observations to study supraglacial hydrology. Using the Snow Microwave Radiative Transfer (SMRT) model, this study investigatesthe sensitivity of microwave brightness temperature to snow liquid water content at frequencies from 1.4 to 37 GHz. We first determine the snowpack properties for eight selected coastal sites byretrieving profiles of density, grain size and ice layers from microwave observations when the snowpack is dry during wintertime. Second, a series of brightness temperature simulations is run with added water. The results show that (i) a small quantity of liquid water (≈0.5 kg m−2) can be detected, but the actual quantity cannot be retrieved out of the full range of possible water quantities; (ii) the detection of a buried wet layer is possible up to a maximum depth of 1 to 6 m depending on the frequency (6–37 GHz) and on the snow properties (grain size, density) at each site; (iii) surface ponds and water-saturated areas may prevent melt detection, but the current coverage of these waterbodies in the large satellite field of view is presently too small in Antarctica to have noticeable effects; and (iv) at 1.4 GHz, while the simulations are less reliable, we found a weaker sensitivity to liquid water and the maximal depth of detection is relatively shallow (<10 m) compared to the typical radiation penetration depth in dry firn (≈1000 m) at this low frequency. These numerical results pave the way for the development of improved multi-frequency algorithms to detect melt intensity and the depth of liquid water below the surface in the Antarctic snowpack. 
    more » « less
  5. Rain-on-snow (ROS) events can have adverse impacts on high-latitude ungulate populations when rain freezes in the snowpack, forming ice layers that block access to winter forage. In extreme cases, ROS events have led to mass die-offs. ROS events are linked to advection of warm and moist air, associated with extratropical cyclones. However, these conditions are common to many winter precipitation events, challenging our understanding of the particular conditions under which ROS events occur. This study uses the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) to differentiate ROS events in Alaska from precipitation events in which only snow falls on a preexisting snowpack [snow-on-snow (SOS)]. Over the North Slope and Kotzebue Sound, no clear difference exists between the tracks of ROS-producing and SOS-producing storms. However, in the interior, southwest, and Anchorage, tracks of ROS-producing storms tend to be farther north and west than for SOS-producing storms. The northwest shift of ROS-producing storms is linked to the position of upper-tropospheric anticyclones in the eastern Gulf of Alaska during ROS events. ROS-producing storms are no more intense than SOS-producing storms, but their association with atmospheric blocking leads to stronger pressure gradients on the east side of storms and thereby stronger advection of positive anomalies in temperature and precipitable water. For several sites, sea level pressure in the eastern Gulf of Alaska is also significantly higher a few days prior to ROS events than prior to SOS events, further implicating atmospheric blocking as a facilitator and potential predictor of ROS events. 
    more » « less