Abstract Decadal thermohaline anomalies carried northward by the North Atlantic Current are an important source of predictability in the North Atlantic region. Here, we investigate whether these thermohaline anomalies influence surface-forced water mass transformation (SFWMT) in the eastern subpolar gyre using the reanalyses EN4.2.2 for the ocean and the ERA5 for the atmosphere. In addition, we follow the propagation of thermohaline anomalies along two paths: in the subpolar North Atlantic and the Norwegian Sea. We use observation-based datasets (HadISST, EN4.2.2, and Ishii) between 1947 and 2021 and apply complex empirical orthogonal functions. Our results show that when a warm anomaly enters the eastern subpolar gyre, more SFWMT occurs in light-density classes (27.0–27.2 kg m−3). In contrast, when a cold anomaly enters the eastern subpolar gyre, more SFWMT occurs in denser classes (27.4–27.5 kg m−3). Following the thermohaline anomalies in both paths, we find alternating warm–salty and cold–fresh subsurface anomalies, repeating throughout the 74-yr-long record with four warm–salty and cold–fresh periods after the 1950s. The cold–fresh anomaly periods happen simultaneously with the Great Salinity Anomaly events. Moreover, the propagation of thermohaline anomalies is faster in the subpolar North Atlantic (SPNA) than in the Norwegian Sea, especially for temperature anomalies. These findings might have implications for our understanding of the decadal variability of the lower limb of the Atlantic meridional overturning circulation and predictability in the North Atlantic region. Significance StatementAnomalously warm–salty or cold–fresh water, carried by the North Atlantic Current toward the Arctic, is a source of climate predictability. In this study, we investigate 1) how these ocean anomalies influence the transformation of water masses in the eastern subpolar gyre and 2) their subsequent propagation poleward and northwestward. The key findings reveal that anomalously warm waters entering the eastern subpolar gyre lead to increased transformation in lighter water masses, while cold anomalies affect denser water masses. These anomalies propagate more than 2 times faster toward the Greenland coast (northwestward) than toward the Arctic (poleward). Our findings contribute to enhancing the understanding of decadal predictability in the northern North Atlantic, including its influence on the Atlantic meridional overturning circulation.
more »
« less
Warm air intrusions reaching the MOSAiC expedition in April 2020—The YOPP targeted observing period (TOP)
In the spring period of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, an initiative was in place to increase the radiosounding frequency during warm air intrusions in the Atlantic Arctic sector. Two episodes with increased surface temperatures were captured during April 12–22, 2020, during a targeted observing period (TOP). The large-scale circulation efficiently guided the pulses of warm air into the Arctic and the observed surface temperature increased from −30°C to near melting conditions marking the transition to spring, as the temperatures did not return to values below −20°C. Back-trajectory analysis identifies 3 pathways for the transport. For the first temperature maximum, the circulation guided the airmass over the Atlantic to the northern Norwegian coast and then to the MOSAiC site. The second pathway was from the south, and it passed over the Greenland ice sheet and arrived at the observational site as a warm but dry airmass due to precipitation on the windward side. The third pathway was along the Greenland coast and the arriving airmass was both warm and moist. The back trajectories originating from pressure levels between 700 and 900 hPa line up vertically, which is somewhat surprising in this dynamically active environment. The processes acting along the trajectory originating from 800 hPa at the MOSAIC site are analyzed. Vertical profiles and surface energy exchange are presented to depict the airmass transformation based on ERA5 reanalysis fields. The TOP could be used for model evaluation and Lagrangian model studies to improve the representation of the small-scale physical processes that are important for airmass transformation. A comparison between MOSAiC observations and ERA5 reanalysis demonstrates challenges in the representation of small-scale processes, such as turbulence and the contributions to various terms of the surface energy budget, that are often misrepresented in numerical weather prediction and climate models.
more »
« less
- PAR ID:
- 10472934
- Publisher / Repository:
- Elementa: Science of the Anthropocene
- Date Published:
- Journal Name:
- Elem Sci Anth
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2325-1026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Iceland and Greenland Seas are a crucial region for the climate system, being the headwaters of the lower limb of the Atlantic Meridional Overturning Circulation. Investigating the atmosphere–ocean–ice processes in this region often necessitates the use of meteorological reanalyses—a representation of the atmospheric state based on the assimilation of observations into a numerical weather prediction system. Knowing the quality of reanalysis products is vital for their proper use. Here we evaluate the surface‐layer meteorology and surface turbulent fluxes in winter and spring for the latest reanalysis from the European Centre for Medium‐Range Weather Forecasts, i.e., ERA5. In situ observations from a meteorological buoy, a research vessel, and a research aircraft during the Iceland–Greenland Seas Project provide unparalleled coverage of this climatically important region. The observations are independent of ERA5. They allow a comprehensive evaluation of the surface meteorology and fluxes of these subpolar seas and, for the first time, a specific focus on the marginal ice zone. Over the ice‐free ocean, ERA5 generally compares well to the observations of surface‐layer meteorology and turbulent fluxes. However, over the marginal ice zone, the correspondence is noticeably less accurate: for example, the root‐mean‐square errors are significantly higher for surface temperature, wind speed, and surface sensible heat flux. The primary reason for the difference in reanalysis quality is an overly smooth sea‐ice distribution in the surface boundary conditions used in ERA5. Particularly over the marginal ice zone, unrepresented variability and uncertainties in how to parameterize surface exchange compromise the quality of the reanalyses. A parallel evaluation of higher‐resolution forecast fields from the Met Office's Unified Model corroborates these findings.more » « less
-
Baffin Bay exports Arctic Water to the North Atlantic while receiving northward flowing Atlantic Water. Warm Atlantic Water has impacted the retreat of tidewater glaciers draining the Greenland Ice Sheet. Periods of enhanced Atlantic Water transport into Baffin Bay have been observed, but the oceanic processes are still not fully explained. At the end of 2010 the net transport at Davis Strait, the southern gateway to Baffin Bay, reversed from southward to northward for a month, leading to significant northward oceanic heat transport into Baffin Bay. This was associated with an extreme high in the Greenland Blocking Index and a stormtrack path that shifted away from Baffin Bay. Thus fewer cyclones in the Irminger Sea resulted in less frequent northerly winds along the western coast of Greenland, allowing anomalous northward penetration of warm waters, reversing the volume and heat transport at Davis Strait.more » « less
-
null (Ed.)This article sets the near-surface meteorological conditions during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition in the context of the interannual variability and extremes within the past 4 decades. Hourly ERA5 reanalysis data for the Polarstern trajectory for 1979–2020 are analyzed. The conditions were relatively normal given that they were mostly within the interquartile range of the preceding 4 decades. Nevertheless, some anomalous and even record-breaking conditions did occur, particularly during synoptic events. Extreme cases of warm, moist air transported from the northern North Atlantic or northwestern Siberia into the Arctic were identified from late fall until early spring. Daily temperature and total column water vapor were classified as being among the top-ranking warmest/wettest days or even record-breaking based on the full record. Associated with this, the longwave radiative fluxes at the surface were extremely anomalous for these winter cases. The winter and spring period was characterized by more frequent storm events and median cyclone intensity ranking in the top 25th percentile of the full record. During summer, near melting point conditions were more than a month longer than usual, and the July and August 2020 mean conditions were the all-time warmest and wettest. These record conditions near the Polarstern were embedded in large positive temperature and moisture anomalies over the whole central Arctic. In contrast, unusually cold conditions occurred during the beginning of November 2019 and in early March 2020, related to the Arctic Oscillation. In March, this was linked with anomalously strong and persistent northerly winds associated with frequent cyclone occurrence to the southeast of the Polarstern.more » « less
-
Abstract Mass loss of the Greenland Ice Sheet (GrIS) plays a major role in the global sea level rise. The west coast of the GrIS has contributed 1,000 Gt of the 4,488 Gt GrIS mass loss between 2002 and 2021, making it a hotspot for GrIS mass loss. Surface melting is driven by changes in the radiative budget at the surface, which are modulated by clouds. Previous works have shown the impact of North Atlantic transport for influencing cloudiness over the GrIS. Here we used space‐based lidar cloud profile observations to show that a polar low circulation promotes the presence of low clouds over the GrIS west coast that warm radiatively the GrIS surface during the melt season. Polar low circulation transports moisture and low clouds from the sea to the west of Greenland up over the GrIS west coast through the melt season. The concomitance of the increasing presence of low cloud in fall over the Baffin Sea due to seasonal sea‐ice retreat and a maximum occurrence of Polar low circulation in September results in a maximum of low cloud fraction (∼14% at 2.5 km above sea level) over the GrIS west coast in September. These low clouds warm radiatively the GrIS west coast surface up to 80 W/m2locally. This warming contributes to an average increase of 10 W/m2of cloud surface warming in September compared to July on the GrIS west coast. Overall, this study suggests that regional atmospheric processes independent from North Atlantic transport may also influence the GrIS melt.more » « less
An official website of the United States government

