Microporous two-dimensional covalent organic framework (2D COF) membranes offer promise for gas separation applications, but their gas transport mechanism remains unclear. In this study, a TpHz 2D COF membrane supported on a macroporous nylon substrate is prepared by substrate-assisted interfacial polymerization under mild conditions. The formation of a continuous and dense thin (∼300 nm thick) TpHz layer is confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy. Characterization by X-ray diffraction, grazing incidence wide-angle X-ray scattering, and N2 porosimetry qualitatively reveals the microstructures of the supported TpHz membranes, i.e., they comprise partially oriented 2D COF lamellar crystallites with moderate crystallinity in an eclipsed (AA) stacking geometry, centering the effective membrane pore size distribution at ∼1.1 nm. Single gas permeation data show that the transport of common molecular gases, including H2, He, CH4, N2, and CO2, through the synthesized TpHz membranes follows the Knudsen transport mechanism, where single gas permeance decreases with an increasing molecular weight and permeation temperature. Binary gas separation results show that in the equimolar CO2/N2 mixture, the presence of the CO2 surface flow slightly hinders the N2 flow at room temperature due to the reduced membrane channel size by the adsorbed CO2 gas layer on TpHz’s pore wall. In contrast, permeation of the equimolar CH4/N2 binary mixture does not exhibit a discernible surface flow of both gases due to their much lower gas uptake on TpHz, and their transport mechanism follows Knudsen-like behavior. 
                        more » 
                        « less   
                    
                            
                            Effect of the annealing temperature of polybenzimidazole membranes in high pressure and high temperature H2/CO2 gas separations
                        
                    
    
            The effect of the annealing temperature of polybenzimidazole (PBI) membranes on H2/CO2 gas separations was investigated. Membranes annealed from 250 ◦C to 400 ◦C were tested for gas permeation with pure H2, CO2, and N2 gases and a H2:CO2 (1:1) mixture at 35 ◦C, 100 ◦C, 200 ◦C, and 300 ◦C and at pressures up to 45 bar. Gas permeation data show that permeability and selectivity of the membranes is significantly impacted by the annealing temperature, the presence of adsorbed water, and remaining casting solvent (DMAc). At a testing temperature of 35 ◦C, ideal H2/CO2 selectivities of 50, 49, and 66 with pure H2 permeabilities of 1.5, 0.8, and 1.5 Barrer were obtained for membranes annealed at 250 ◦C, 300 ◦C, and 400 ◦C, respectively. At this temperature, high gas mixture H2/CO2 selectivities of 41, 73, and 47 with H2 permeabilities of 1.03, 0.26, and 0.50 Barrer were also obtained for these membranes. At testing temperatures of 300 ◦C, both the ideal and gas mixture H2/ CO2 selectivities dropped to 44, 28, and 30 (ideal, H2 = 45, 45, 44 Barrer) and to 19, 22, and 23 (mixture, H2 = 41, 43, and 44 Barrer) for membranes annealed at 250 ◦C, 300 ◦C, and 400 ◦C, respectively. As water was removed from the membranes at temperatures greater than 100 ◦C during permeation cycles, where the testing temperature was increased from 35 ◦C to 300 ◦C, the permselectivity properties of the membranes annealed at 400 ◦C became more reproducible. Permeabilities at 35 ◦C from a second permeability cycle increased, but H2/ CO2 selectivities decreased to 21 for gas mixtures (H2 = 1.4 Barrer) and to 34 for pure gases (H2 = 2.2 Barrer). The results suggest that high annealing temperatures may induce changes in the configuration and conformation of the polymer chains, imparting distinctive permselectivity properties to the membranes. Activation energies of permeability for H2, CO2, and N2 from pure gases and H2:CO2 mixtures correlated with these changes as well. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1917747
- PAR ID:
- 10472980
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Membrane Science
- Volume:
- 677
- Issue:
- C
- ISSN:
- 0376-7388
- Page Range / eLocation ID:
- 121619
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Carbon molecular sieve membranes (CMSMs) were prepared by carbonizing the high free volume polyimide BTDA-BAF that is obtained from the reaction of benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) and 9,9-bis(4-aminophenyl) fluorene (BAF). The bulky cardo groups prevented a tight packing and rotation of the chains that leads to high permeabilities of their CMSMs. The incorporation of metal–organic polyhedra 18 (MOP-18, a copper-based MOP) in the BTDA-BAF polymer before pyrolysis at 550 °C prevented the collapse of the pores and the aging of the CMSMs. It was found that upon decomposition of MOP-18, a distribution of copper nanoparticles minimized the collapse of the graphitic sheets that formed the micropores and mesopores in the CMSM. The pillared CMSMs displayed CO2 and CH4 permeabilities of 12,729 and 659 Barrer, respectively, with a CO2/CH4 selectivity of 19.3 after 3 weeks of aging. The permselectivity properties of these membranes was determined to be at the 2019 Robeson upper bound. In contrast, the CMSMs from pure BTDA-BAF aged three times faster than the CMSMs from MOP-18/BTDA-BAF and exhibited lower CO2 and CH4 permeabilities of 5337 and 573 Barrer, respectively, with a CO2/CH4 selectivity of 9.3. The non-pillared CMSMs performed below the upper bound.more » « less
- 
            null (Ed.)Here, we report the synthesis and thermophysical properties of seven primarily aromatic, imidazolium-based polyamide ionenes. The effects of varied para-, meta-, and ortho-connectivity, and spacing of ionic and amide functional groups, on structural and thermophysical properties were analyzed. Suitable, robust derivatives were cast into thin films, neat, or with stoichiometric equivalents of the ionic liquid (IL) 1-benzy-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), and the gas transport properties of these membranes were measured. Pure gas permeabilities and permselectivities for N2, CH4, and CO2 are reported. Consistent para-connectivity in the backbone was shown to yield the highest CO2 permeability and suitability for casting as a very thin, flexible film. Derivatives containing terephthalamide segments exhibited the highest CO2/CH4 and CO2/N2 selectivities, yet CO2 permeability decreased with further deviation from consistent para-linkages.more » « less
- 
            Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the thermal and chemical imidization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C3H8, C3H6, CO2, and H2) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C3H8, C3H6 adsorption capacities reached 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane was formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
- 
            Polymeric membranes are being studied for their potential use in post-combustion carbon capture on the premise that they could dramatically lower costs relative to mature technologies available today. Mixed matrix membranes (MMMs) are advanced materials formed by combining polymers with inorganic particles. Using metal–organic frameworks (MOFs) as the inorganic particles has been shown to improve selectivity and permeability over pure polymers. We have carried out high-throughput atomistic simulations on 112 888 real and hypothetical metal–organic framework structures in order to calculate their CO 2 permeabilities and CO 2 /N 2 selectivities. The CO 2 /H 2 O sorption selectivity of 2 017 real MOFs was evaluated using the H 2 O sorption data of Li et al. (S. Li, Y. G. Chung and R. Q. Snurr, Langmuir , 2016, 32 , 10368–10376). Using experimentally measured polymer properties and the Maxwell model, we predicted the properties of all of the hypothetical mixed matrix membranes that could be made by combining the metal–organic frameworks with each of nine polymers, resulting in over one million possible MMMs. The predicted gas permeation of MMMs was compared to published gas permeation data in order to validate the methodology. We then carried out twelve individually optimized techno-economic evaluations of a three-stage membrane-based capture process. For each evaluation, capture process variables such as flow rate, capture fraction, pressure and temperature conditions were optimized and the resultant cost data were interpolated in order to assign cost based on membrane selectivity and permeability. This work makes a connection from atomistic simulation all the way to techno-economic evaluation for a membrane-based carbon capture process. We find that a large number of possible mixed matrix membranes are predicted to yield a cost of carbon capture less than $50 per tonne CO 2 removed, and a significant number of MOFs so identified have favorable CO 2 /H 2 O sorption selectivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    