skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Case II diffusion of water in Na 2 O–3SiO 2 glass: Constant tensile stress gradient at the diffusion interface
Abstract Some polymers and oxide glasses exhibit unusual diffusion of liquid or gas, with the depth of diffusion exhibiting a linear increase with time, instead of normal square root of time dependence. There have been many models, but very few experimental data that can help clarify the cause of the phenomenon's existence in glass. Residual stress in sodium trisilicate glass (Na2O–3SiO2) samples was characterized following Case II water diffusion at 80°C in a saturated water vapor environment. The surface‐swelled layer of the glass was removed by dissolving it in water, and birefringence of the newly revealed surface layer was measured. The presence of a constant negative tensile stress gradient was revealed by indicating that Case II diffusion in sodium trisilicate glass originates from this stress gradient, which overwhelms the more typical Fick's law concentration‐dependent flux.  more » « less
Award ID(s):
1713670
PAR ID:
10472994
Author(s) / Creator(s):
;
Publisher / Repository:
American Ceramic Society and Wiley Periodicals LLC
Date Published:
Journal Name:
International Journal of Applied Glass Science
Volume:
14
Issue:
2
ISSN:
2041-1286
Page Range / eLocation ID:
330 to 337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Residual stress profiles in silica glass were measured after water diffusion treatment under 47.33 kPa (355 Torr) water vapor at 350°C and 650°C. Earlier, it was found that water solubility in silica glass exhibited peculiar time dependence: Solubility increased with time exceeding the normal water solubility expected from higher temperatures. Then, the water solubility decreased with time. It was hypothesized that the stress induced by water diffusion and its subsequent relaxation is responsible for the phenomenon. Residual surface stress generation in silica glass was found to correlate closely with surface hydroxyl concentration, systematically increasing until eventual surface stress relaxation results in stress decrease for treatments beyond 265 hours at 650°C. This observation validates previous theories of time dependent diffusivity in silica glass. 
    more » « less
  2. Abstract The obsidian dating method converts the quantity of diffused molecular water within a near‐surface hydration layer to elapsed time using an experimentally derived diffusion coefficient predicted from the structural water content of the glass. Infrared spectroscopic transmission measurements on transparent archaeological samples record vibrational responses of water bands in the near‐infrared region, permitting determination of structural water content (OH), and the amount of diffused ambient water (H2O). In this application, the H2O water band at 5200 cm−1is measured directly. The accuracy of the approach is assessed by an evaluation of the precision of each contributing variable. The new protocol is evaluated using obsidian artifacts from radiocarbon‐dated deposits at Salamanca Cave in Argentina. 
    more » « less
  3. Abstract Sodium–oxygen (Na–O2) batteries are considered a promising energy storage alternative to current state‐of‐the‐art technologies owing to their high theoretical energy density, along with the natural abundance and low price of Na metal. The chemistry of these batteries depends on sodium superoxide (NaO2) or peroxide (Na2O2) being formed/decomposed. Most Na–O2batteries form NaO2, but reversibility is usually quite limited due to side reactions at interfaces. By using new materials, including a highly active catalyst based on vanadium phosphide (VP) nanoparticles, an ether/ionic liquid‐based electrolyte, and an effective sodium bromide (NaBr) anode protection layer, the sources of interface reactivity can be reduced to achieve a Na–O2battery cell that is rechargeable for 1070 cycles with a high energy efficiency of more than 83%. Density functional theory calculations, along with experimental characterization confirm the three factors leading to the long cycle life, including the effectiveness of the NaBr protective layer on the anode, a tetraglyme/EMIM‐BF4based electrolyte that prevents oxidation of the VP cathode catalyst surface, and the EMIM‐BF4ionic liquid aiding in avoiding electrolyte decomposition on NaO2
    more » « less
  4. null (Ed.)
    Cobalt( ii ) ions were adsorbed to the surface of rod-shape anatase TiO 2 nanocrystals and subsequently heated to promote ion diffusion into the nanocrystal. After removal of any remaining surface bound cobalt, a sample consisting of strictly cobalt-doped TiO 2 was obtained and characterized with powder X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy, SQUID magnetometry, and inductively-coupled plasma atomic emission spectroscopy. The nanocrystal morphology was unchanged in the process and no new crystal phases were detected. The concentration of cobalt in the doped samples linearly correlates with the initial loading of cobalt( ii ) ions on the nanocrystal surface. Thin films of the cobalt doped TiO 2 nanocrystals were prepared on indium-tin oxide coated glass substrate, and the electrical conductivity increased with the concentration of doped cobalt. Magnetic measurements of the cobalt-doped TiO 2 nanocrystals reveal paramagnetic behavior at room temperature, and antiferromagnetic interactions between Co ions at low temperatures. Antiferromagnetism is atypical for cobalt-doped TiO 2 nanocrystals, and is proposed to arise from interstitial doping that may be favored by the diffusional doping mechanism. 
    more » « less
  5. Abstract Silica glass samples were given various heat treatments under stress at low temperatures and subsequently their residual stress distributions in terms of retardance were observed using a polarized light microscope, confirming previously reported fast surface stress relaxation while providing more detailed characterization. Retardance profiles of silica glass fibers heat‐treated under a constant bending strain in the presence of atmospheric water vapor were measured and fit to a previously developed diffusion‐based relaxation model. The retardance of a cross‐section of a silica glass rod heat‐treated at 650°C in lab air under applied torsional shear strain was also measured to confirm the presence of residual surface shear stress which was predicted by the decrease of torque with time for the rod. Together, these results confirm the low‐temperature fast surface stress relaxation which occurs when water vapor is present for both bending and shear stresses. 
    more » « less