Flying snakes are the only snakes on Earth capable of aerial gliding, taking advantage of fluid dynamic principles to leap from point to point among the trees. During their gliding, the locomotion of aerial undulation is observed. We hypothesize that this locomotion and its associated unsteady vortex dynamics are critical to their aerodynamic performance. However, there is a lack of detailed three-dimensional flow field information around the snake body in gliding due to the difficulties in experimental flow visualizations of live animals. In this study, a computation fluid dynamics (CFD) study has been conducted to study the fluid dynamics of a snake-like gliding. A mathematical equation describing the horizontal undulation motion was applied for constructing snake-like 3D computational models and a series of flow simulations were conducted. An immersed-boundary-method (IBM)-based direct numerical simulation (DNS) flow solver along with adaptive mesh refinement (AMR) was used in the simulation. Specifically, different head positions, corresponding to different horizontal wave shapes and their effect on aerodynamic performance, flow field and wake structures behind the body will be studied. In addition, the dynamic undulating motion is introduced in the model and a CFD simulation is also conducted. Results from this study are expected to bring a step stone to understanding snake-inspired locomotion.
more »
« less
Computational analysis of vortex dynamics and aerodynamic performance in flying-snake-like gliding flight with horizontal undulation
This paper numerically studies the flow dynamics of aerial undulation of a snake-like model, which is adapted from the kinematics of the flying snake (Chrysopelea) undergoing a gliding process. The model applies aerial undulation periodically in a horizontal plane where a range of angle of attack (AOA) is assigned to model the real gliding motion. The flow is simulated using an immersed-boundary-method-based incompressible flow solver. Local mesh refinement mesh blocks are implemented to ensure the grid resolutions around the moving body. Results show that the undulating body produces the maximum lift at 45° of AOA. Vortex dynamics analysis has revealed a series of vortex structures including leading-edge vortices (LEV), trailing-edge vortices, and tip vortices around the body. Changes in other key parameters including the undulation frequency and Reynolds number are also found to affect the aerodynamics of the studied snake-like model, where increasing of undulation frequency enhances vortex steadiness and increasing of Reynolds number enhances lift production due to the strengthened LEVs. This study represents the first study of both the aerodynamics of the whole body of the snake as well as its undulatory motion, providing a new basis for investigating the mechanics of elongated flexible flyers.
more »
« less
- Award ID(s):
- 2027534
- PAR ID:
- 10473034
- Publisher / Repository:
- Physics of Fluids
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 34
- Issue:
- 12
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper presents a numerical investigation into the aerodynamic characteristics and fluid dynamics of a flying snake-like model employing vertical bending locomotion during aerial undulation in steady gliding. In addition to its typical horizontal undulation, the modeled kinematics incorporates vertical undulations and dorsal-to-ventral bending movements while in motion. Using a computational approach with an incompressible flow solver based on the immersed-boundary method, this study employs topological local mesh refinement mesh blocks to ensure the high resolution of the grid around the moving body. Initially, we applied a vertical wave undulation to a snake model undulating horizontally, investigating the effects of vertical wave amplitudes ( ). The vortex dynamics analysis unveiled alterations in leading-edge vortices formation within the midplane due to changes in the effective angle of attack resulting from vertical bending, directly influencing lift generation. Our findings highlighted peak lift production at and the highest lift-to-drag ratio (L/D) at , with aerodynamic performance declining beyond this threshold. Subsequently, we studied the effects of the dorsal–ventral bending amplitude ( ), showing that the tail-up/down body posture can result in different fore-aft body interactions. Compared to the baseline configuration, the lift generation is observed to increase by 17.3% at = 5°, while a preferable L/D is found at = −5°. This study explains the flow dynamics associated with vertical bending and uncovers fundamental mechanisms governing body–body interaction, contributing to the enhancement of lift production and efficiency of aerial undulation in snake-inspired gliding.more » « less
-
Abstract The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.more » « less
-
The cross-flow vortex-induced vibration (VIV) response of an elastically mounted idealized undulatory seal whisker (USW) shape is investigated in a wide range of reduced velocity at angles of attack (AOAs) from 0° to 90° and a low Reynolds number of 300. The mass ratio is set to 1.0 to represent the real seal whisker. Dynamic mode decomposition is used to investigate the vortex shedding mode in various cases. In agreement with past studies, the VIV response of the USW is highly AOA-dependent because of the change in the underlying vortex dynamics. At zero AOA, the undulatory shape leads to a hairpin vortex mode that results in extremely low lift force oscillation with a lowered frequency. The frequency remains unaffected by VIV throughout the tested range of reduced velocity. As the AOA deviates from zero, alternating shedding of spanwise vortices becomes dominant. A mixed vortex shedding mode is observed at AOA = 15° in the transition. As the AOA deviated from zero, the VIV amplitude increases rapidly by two orders, reaching the maximum of about 3 times diameter at 90°. An infinite lock-in branch is present for AOA from 60° to 90°, where the VIV amplitude remains high regardless of the increase in reduced velocity.more » « less
-
Large-eddy simulations (LES) of the fluid flow over a NACA0018 airfoil at AOA =20 degrees angle of attack are performed to investigate the effect of surface morphing oscillations on the aerodynamic performance of the airfoil over a wide range of Reynolds numbers (Re = 5,000 to 500,000). These oscillations are in the form of low amplitude backward (opposite to the airfoil's forward motion) traveling wave actuations on the upper surface of the airfoil. The sharp interface curvilinear immersed boundary (CURVIB) method is used to handle the moving surface of the airfoil. The nondimensional amplitude is a*=0.001 (a*=a/L; a: amplitude, L: chord length of the airfoil) and reduced frequency (f*= fL/U; f is the frequency and U is the freestream velocity) is chosen to match the leading edge vortex shedding frequency. The results of the simulations at the post-stall angle of attack (AOA =20 degrees) show that the lift coefficient increases more than 20% and the drag coefficient decreases more than 40% within the Reynolds number range of Re = 50,000-500,000 for traveling wave actuation of amplitude, a*=0.001, and frequency, f*=8. However, the lift and drag coefficients of the actuated airfoil were similar to the baseline airfoil for Re = 5,000.more » « less
An official website of the United States government

