skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertical bending and aerodynamic performance in flying snake-inspired aerial undulation
Abstract This paper presents a numerical investigation into the aerodynamic characteristics and fluid dynamics of a flying snake-like model employing vertical bending locomotion during aerial undulation in steady gliding. In addition to its typical horizontal undulation, the modeled kinematics incorporates vertical undulations and dorsal-to-ventral bending movements while in motion. Using a computational approach with an incompressible flow solver based on the immersed-boundary method, this study employs topological local mesh refinement mesh blocks to ensure the high resolution of the grid around the moving body. Initially, we applied a vertical wave undulation to a snake model undulating horizontally, investigating the effects of vertical wave amplitudes ( ψ m ). The vortex dynamics analysis unveiled alterations in leading-edge vortices formation within the midplane due to changes in the effective angle of attack resulting from vertical bending, directly influencing lift generation. Our findings highlighted peak lift production at ψ m = 2.5 and the highest lift-to-drag ratio (L/D) at ψ m = 5 , with aerodynamic performance declining beyond this threshold. Subsequently, we studied the effects of the dorsal–ventral bending amplitude ( ψ DV ), showing that the tail-up/down body posture can result in different fore-aft body interactions. Compared to the baseline configuration, the lift generation is observed to increase by 17.3% at ψ DV = 5°, while a preferable L/D is found at ψ DV = −5°. This study explains the flow dynamics associated with vertical bending and uncovers fundamental mechanisms governing body–body interaction, contributing to the enhancement of lift production and efficiency of aerial undulation in snake-inspired gliding.  more » « less
Award ID(s):
2027534
PAR ID:
10557153
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
20
Issue:
1
ISSN:
1748-3182
Format(s):
Medium: X Size: Article No. 016013
Size(s):
Article No. 016013
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  2. Abstract The production of a pair of τ leptons via photon–photon fusion, γ γ τ τ , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of γ γ τ τ is σ obs fid = 12.4 3.1 + 3.8 fb . Constraints are set on the contributions to the anomalous magnetic moment ( a τ ) and electric dipole moments ( d τ ) of the τ lepton originating from potential effects of new physics on the γ τ τ vertex: a τ = 0.0009 0.0031 + 0.0032 and | d τ | < 2.9 × 10 17 e cm (95% confidence level), consistent with the standard model. 
    more » « less
  3. Abstract The sensitivity of urban canopy air temperature ( T a ) to anthropogenic heat flux ( Q A H ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of Δ T a / Δ Q A H (where Δ represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing Δ T a / Δ Q A H simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median Δ T a / Δ Q A H is around 0.01 K  W  m 2 1 over the CONUS. Besides the direct effect of Q A H on T a , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( c a ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and Δ T a / Δ Q A H is mostly controlled by the direct effect in summer. In winter, Δ T a / Δ Q A H becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with c a . The spatial and temporal (both seasonal and diurnal) variability of Δ T a / Δ Q A H as well as the nonlinear response of Δ T a to Δ Q A H are strongly related to the variability of c a , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models. 
    more » « less
  4. Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic X ˜ 2 Σ + ( 010 ) state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the X ˜ 2 Σ + ( 010 ) state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of 174 YbOH using high-resolution optical spectroscopy on the nominally forbidden X ˜ 2 Σ + ( 010 ) A ˜ 2 Π 1 / 2 ( 000 ) transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the X ˜ 2 Σ + ( 010 ) state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the X ˜ 2 Σ + ( 010 ) state and fit the molecule-frame dipole moment to D m o l = 2.16 ( 1 ) Dand the effective electrong-factor to g S = 2.07 ( 2 ) . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited A ˜ 2 Π 1 / 2 ( 000 ) state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. 
    more » « less
  5. Abstract We analyze an optical atomic clock using two-photon 5 S 1 / 2 4 D J transitions in rubidium. Four one- and two-color excitation schemes to probe the 4 D 3 / 2 and 4 D 5 / 2 fine-structure states are considered in detail. We compare key characteristics of Rb 4 D J and 5 D 5 / 2 two-photon clocks. The 4 D J clock features a high signal-to-noise ratio due to two-photon decay at favorable wavelengths, low dc electric and magnetic susceptibilities, and minimal black-body shifts. Ac Stark shifts from the clock interrogation lasers are compensated by two-color Rabi-frequency matching. We identify a ‘magic’ wavelength near 1060 nm, which allows for in-trap, Doppler-free clock-transition interrogation with lattice-trapped cold atoms. From our analysis of clock statistics and systematics, we project a quantum-noise-limited relative clock stability at the 10 13 / τ ( s ) -level, with integration timeτin seconds, and a relative accuracy of 10 13 . We describe a potential architecture for implementing the proposed clock using a single telecom clock laser at 1550 nm, which is conducive to optical communication and long-distance clock comparisons. Our work could be of interest in efforts to realize small and portable Rb clocks and in high-precision measurements of atomic properties of Rb 4 D J -states. 
    more » « less