Photons at microwave and optical frequencies are principal carriers for quantum information. While microwave photons can be effectively controlled at the local circuit level, optical photons can propagate over long distances. High-fidelity conversion between microwave and optical photons will allow the distribution of quantum states across different quantum technology nodes and enhance the scalability of hybrid quantum systems toward a future “Quantum Internet.” Despite a frequency difference of five orders of magnitude, there has been significant progress recently toward the transfer between microwave and optical photons with steadily improved efficiency in a coherent and bidirectional manner. In this review, we summarize this progress, emphasizing integrated device approaches, and provide a perspective for device implementation that enables quantum state transfer and entanglement distribution across microwave and optical domains.
more »
« less
Quantum optical memory for entanglement distribution
Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances.
more »
« less
- Award ID(s):
- 2410198
- PAR ID:
- 10473096
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 10
- Issue:
- 11
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 1511
- Size(s):
- Article No. 1511
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We develop a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates. Using this technique, we determine various optimal satellite configurations for a polar-orbit constellation, and we analyze the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations. We also provide a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes. Overall, our work provides the theoretical tools and the experimental guidance needed to make a satellite-based global quantum internet a reality.more » « less
-
Abstract The cooperative phenomena stemming from the radiation field-mediated coupling between individual quantum emitters are presently attracting broad interest for applications related to on-chip photonic quantum memories and long-range entanglement. Common to these applications is the generation of electro-magnetic modes over macroscopic distances. Much research, however, is still needed before such systems can be deployed in the form of practical devices, starting with the investigation of alternate physical platforms. Quantum emitters in two-dimensional (2D) systems provide an intriguing route because these materials can be adapted to arbitrarily shaped substrates to form hybrid systems wherein emitters are near-field-coupled to suitable optical modes. Here, we report a scalable coupling method allowing color center ensembles in a van der Waals material (hexagonal boron nitride) to couple to a delocalized high-quality plasmonic surface lattice resonance. This type of architecture is promising for photonic applications, especially given the ability of the hexagonal boron nitride emitters to operate as single-photon sources at room temperature.more » « less
-
We experimentally study the ability of a broadband “loop-and-switch” type quantum memory device to store entanglement. We find that one active loop-based memory and one passive fiber delay line can be used to faithfully store two polarization-entangled photons and demonstrate a rudimentary entanglement distribution protocol. The entangled photons are produced by a conventional spontaneous parametric down-conversion source with center wavelengths at 780 nm and bandwidths of ∼10 THz, while the memory has an even wider operational bandwidth that is enabled by the weakly dispersive nature of the Pockels effect used for polarization-insensitive active switching. These results help demonstrate the utility of loop-based quantum memories for quantum networking applications.more » « less
-
Abstract A key challenge in realizing practical quantum networks for long-distance quantum communication involves robust entanglement between quantum memory nodes connected by fibre optical infrastructure1–3. Here we demonstrate a two-node quantum network composed of multi-qubit registers based on silicon-vacancy (SiV) centres in nanophotonic diamond cavities integrated with a telecommunication fibre network. Remote entanglement is generated by the cavity-enhanced interactions between the electron spin qubits of the SiVs and optical photons. Serial, heralded spin-photon entangling gate operations with time-bin qubits are used for robust entanglement of separated nodes. Long-lived nuclear spin qubits are used to provide second-long entanglement storage and integrated error detection. By integrating efficient bidirectional quantum frequency conversion of photonic communication qubits to telecommunication frequencies (1,350 nm), we demonstrate the entanglement of two nuclear spin memories through 40 km spools of low-loss fibre and a 35-km long fibre loop deployed in the Boston area urban environment, representing an enabling step towards practical quantum repeaters and large-scale quantum networks.more » « less