Membrane-based cavity optomechanical systems have been widely successful; however, their chip-scale integration remains a significant challenge. Here we present a solution based on metasurface design. Specifically, by non-periodic photonic crystal patterning of a Si3N4membrane, we realize a suspended metamirror with a finite focal length, enabling formation of a stable optical cavity with a plane end-mirror. We present simulation, fabrication, and characterization of the metamirror using both free-space and cavity-based measurements, demonstrating reflectivities as high as 99% and cavity finesse as high as 600. The mirror radius of curvature (∼30cm) is inferred from the cavity mode spectrum. In combination with phononic engineering, focusing membrane mirrors offer a route towards high-cooperativity, vertically integrated cavity optomechanical systems with applications ranging from precision force sensing to hybrid quantum transduction.
more »
« less
Degradation of Ta 2 O 5 / SiO 2 dielectric cavity mirrors in ultra-high vacuum
In order for optical cavities to enable strong light-matter interactions for quantum metrology, networking, and scalability in quantum computing systems, their mirrors must have minimal losses. However, high-finesse dielectric cavity mirrors can degrade in ultra-high vacuum (UHV), increasing the challenges of upgrading to cavity-coupled quantum systems. We observe the optical degradation of high-finesse dielectric optical cavity mirrors after high-temperature UHV bake in the form of a substantial increase in surface roughness. We provide an explanation of the degradation through atomic force microscopy (AFM), X-ray fluorescence (XRF), selective wet etching, and optical measurements. We find the degradation is explained by oxygen reduction in Ta2O5followed by growth of tantalum sub-oxide defects with height to width aspect ratios near ten. We discuss the dependence of mirror loss on surface roughness and finally give recommendations to avoid degradation to allow for quick adoption of cavity-coupled systems.
more »
« less
- Award ID(s):
- 2317134
- PAR ID:
- 10473155
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 31
- Issue:
- 24
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 39670
- Size(s):
- Article No. 39670
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The exceptional stability required from high finesse optical cavities and high precision interferometers is fundamentally limited by Brownian motion noise in the interference coatings of the cavity mirrors. In amorphous oxide coatings these thermally driven fluctuations are dominant in the high index layer compared to those in the low index SiO2layer in the stack. We present a systematic study of the evolution of the structural and optical properties of ion beam sputtered TiO2-doped Ta2O5films with annealing temperature. We show that low mechanical loss in TiO2-doped Ta2O5with a Ti cation ratio = 0.27 is associated with a material that consists of a homogeneous titanium-tantalum-oxygen mixture containing a low density of nanometer sized Ar-filled voids. When the Ti cation ratio is 0.53, phase separation occurs leading to increased mechanical loss. These results suggest that amorphous mixed oxides with low mechanical loss could be identified by considering the thermodynamics of ternary phase formation.more » « less
-
This work presents a stable and reliable turnkey continuous-wave laser system for a Yb/Ba multi-species trapped-ion quantum computer. The compact and rack-mountable optics system exhibits high robustness, operating over a year without realignment, regardless of temperature changes in the laboratory. The overall optical system is divided into a few isolated modules interconnected by optical fibers for easy maintenance. The light sources are frequency-stabilized by comparing their frequency with two complementary references, a commercial Fizeau wavelength meter and a high-finesse optical cavity. This scheme enables automatic frequency-stabilization for days with a sub-MHz precision.more » « less
-
The pursuit of room temperature quantum optomechanics with tethered nanomechanical resonators faces stringent challenges owing to extraneous mechanical degrees of freedom. An important example is thermal intermodulation noise (TIN), a form of excess optical noise produced by mixing of thermal noise peaks. While TIN can be decoupled from the phase of the optical field, it remains indirectly coupled via radiation pressure, implying a hidden source of backaction that might overwhelm shot noise. Here we report observation of TIN backaction in a high-cooperativity, room temperature cavity optomechanical system consisting of an acoustic-frequency Si3N4trampoline coupled to a Fabry–Perot cavity. The backaction we observe exceeds thermal noise by 20 dB and radiation pressure shot noise by 40 dB, despite the thermal motion being 10 times smaller than the cavity linewidth. Our results suggest that mitigating TIN may be critical to reaching the quantum regime from room temperature in a variety of contemporary optomechanical systems.more » « less
-
null (Ed.)The dielectric waveguide (WG) is an important building block of high-speed and high-bandwidth optical and opto-electronic interconnect networks that operate in the THz frequency regime. At the interface of Si/SiO 2 dielectric waveguides with width above w = 2.5 μm and anisotropic surface roughness, transverse electric (TE) mode surface wave propagation can experience a loss of approximately a = 2 dB/cm; however, propagation losses increase rapidly to near a = 44 dB/cm as the width decreases to w = 500 nm, due to increased interaction of surface waves and sidewall surface roughness that exhibits random distribution inherent to the manufacturing process. Previous works have developed analytic expressions for computing propagation loss in a single dielectric waveguide exhibiting random roughness. More recent works report a = 0.4 dB/cm noting the non-trivial estimation errors in previous theoretical formulations which relied on planar approximations, and highlight the discrepancy in planar approximations vs. the 3-D Volume Current Method. A challenge that remains in the path of designing nanoscale optical interconnects is the dearth of efficient 3-D stochastic computational electromagnetic (CEM) models for multiple tightly coupled optical dielectric waveguides that characterize propagation loss due to random surface roughness in waveguide sidewalls. Through a series of theoretical and numerical experiments developed in the method of finite-difference time-domain (FDTD), we aim to develop stochastic CEM models to quantify propagation loss and facilitate signal & power integrity modeling & simulation of arbitrary configurations of multiple tightly-coupled waveguides, and to gain further insights into loss mechanisms due to random surface roughness in optical interconnects.more » « less
An official website of the United States government
