To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between flexible bodies of natural aquatic species and water around them. Advanced modal decomposition techniques provide us with tools to develop more in-depth understating about these complex dynamical systems. In this paper, we employ proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract energetically strongest spatio-temporal orthonormal components of complex kinematics of a Crevalle jack (
- Award ID(s):
- 1931929
- NSF-PAR ID:
- 10473185
- Publisher / Repository:
- Physical Review Fluids
- Date Published:
- Journal Name:
- Physical Review Fluids
- Volume:
- 6
- Issue:
- 7
- ISSN:
- 2469-990X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Caranx hippos ) fish. Then, we present a computational framework for handling fluid–structure interaction related problems in order to investigate their contributions towards the overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can be described by only two standing-wave like spatially orthonormal modes. Constructing the data set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our modal analyses reveal that only the first few modes receive energy from both the fluid and structure, but the contribution of the structure in the remaining modes is minimal. For the viscous and transitional flow conditions considered here, both spatially and temporally orthonormal modes show strikingly similar coherent flow structures. Our investigations are expected to assist in developing data-driven reduced-order mathematical models to examine the dynamics of bio-inspired swimming robots and develop new and effective control strategies to bring their performance closer to real fish species. -
Undulatory fin motions in fish-like robots are typically created using intricate arrays of servo motors. Motor arrays offer impressive versatility in terms of kinematics, but their complexity leads to constraints on size, hydrodynamic force production, and power consumption, particularly when studying propulsive performance at high-frequencies. Here we present an alternative design that uses a single motor and a tunable rotary cam-train system to achieve a spectrum of fin motions running from oscillation (wavenumber < 1) to undulation (wavenumber > 1). Our platform enables thrust, lift, power, and wake measurements at prescribed pitch amplitudes, frequencies, and wavenumbers. We demonstrated the platform’s oscillating and undulating capabilities via force and wake measurements in a water tank. Studies of fin wavenumber offer design insights for fish-like underwater robots, particularly those with stingray-inspired designs.more » « less
-
Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots.more » « less
-
This paper numerically studies the flow dynamics of aerial undulation of a snake-like model, which is adapted from the kinematics of the flying snake (Chrysopelea) undergoing a gliding process. The model applies aerial undulation periodically in a horizontal plane where a range of angle of attack (AOA) is assigned to model the real gliding motion. The flow is simulated using an immersed-boundary-method-based incompressible flow solver. Local mesh refinement mesh blocks are implemented to ensure the grid resolutions around the moving body. Results show that the undulating body produces the maximum lift at 45° of AOA. Vortex dynamics analysis has revealed a series of vortex structures including leading-edge vortices (LEV), trailing-edge vortices, and tip vortices around the body. Changes in other key parameters including the undulation frequency and Reynolds number are also found to affect the aerodynamics of the studied snake-like model, where increasing of undulation frequency enhances vortex steadiness and increasing of Reynolds number enhances lift production due to the strengthened LEVs. This study represents the first study of both the aerodynamics of the whole body of the snake as well as its undulatory motion, providing a new basis for investigating the mechanics of elongated flexible flyers.
-
Abstract In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (
μ Bots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For aμ Bot equipped with each caudal fin (andμ Bot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control ofμ Bot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10−4Pa m4(∼10.6 Hz) and stiffness >10−4Pa m4(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10−4Pa m4, with theμ Bot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for theμ Bots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship inμ Bot swimming.