Climate change poses a threat to biodiversity, and it is unclear whether species can adapt to or tolerate new conditions, or migrate to areas with suitable habitats. Reconstructions of range shifts that occurred in response to environmental changes since the last glacial maximum (LGM) from species distribution models (SDMs) can provide useful data to inform conservation efforts. However, different SDM algorithms and climate reconstructions often produce contrasting patterns, and validation methods typically focus on accuracy in recreating current distributions, limiting their relevance for assessing predictions to the past or future. We modeled historically suitable habitat for the threatened North American tree green ashFraxinus pennsylvanicausing 24 SDMs built using two climate models, three calibration regions, and four modeling algorithms. We evaluated the SDMs using contemporary data with spatial block cross‐validation and compared the relative support for alternative models using a novel integrative method based on coupled demographic‐genetic simulations. We simulated genomic datasets using habitat suitability of each of the 24 SDMs in a spatially‐explicit model. Approximate Bayesian computation (ABC) was then used to evaluate the support for alternative SDMs through comparisons to an empirical population genomic dataset. Models had very similar performance when assessed with contemporary occurrences using spatial cross‐validation, but ABC model selection analyses consistently supported SDMs based on the CCSM climate model, an intermediate calibration extent, and the generalized linear modeling algorithm. Finally, we projected the future range of green ash under four climate change scenarios. Future projections using the SDMs selected via ABC suggest only minor shifts in suitable habitat for this species, while some of those that were rejected predicted dramatic changes. Our results highlight the different inferences that may result from the application of alternative distribution modeling algorithms and provide a novel approach for selecting among a set of competing SDMs with independent data.
more »
« less
Integrative demographic modelling reduces uncertainty in estimated rates of species' historical range shifts
Abstract AimBiogeographers have used three primary data types to examine shifts in tree ranges in response to past climate change: fossil pollen, genetic data and contemporary occurrences. Although recent efforts have explored formal integration of these types of data, we have limited understanding of how integration affects estimates of range shift rates and their uncertainty. We compared estimates of biotic velocity (i.e. rate of species' range shifts) using each data type independently to estimates obtained using integrated models. LocationEastern North America. TaxonFraxinus pennsylvanicaMarshall (green ash). MethodsUsing fossil pollen, genomic data and modern occurrence data, we estimated biotic velocities directly from 24 species distribution models (SDMs) and 200 pollen surfaces created with a novel Bayesian spatio‐temporal model. We compared biotic velocity from these analyses to estimates based on coupled demographic‐coalescent simulations and Approximate Bayesian Computation that combined fossil pollen and SDMs with population genomic data collected across theF. pennsylvanicarange. ResultsPatterns and magnitude of biotic velocity over time varied by the method used to estimate past range dynamics. Estimates based on fossil pollen yielded the highest rates of range movement. Overall, integrating genetic data with other data types in our simulation‐based framework reduced apparent uncertainty in biotic velocity estimates and resulted in greater similarity in estimates between SDM‐ and pollen‐integrated analyses. Main ConclusionsBy reducing uncertainty in our assessments of range shifts, integration of data types improves our understanding of the past distribution of species. Based on these results, we propose further steps to reach the integration of these three lines of biogeographical evidence into a unified analytical framework.
more »
« less
- Award ID(s):
- 1924599
- PAR ID:
- 10473278
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Biogeography
- Volume:
- 51
- Issue:
- 2
- ISSN:
- 0305-0270
- Format(s):
- Medium: X Size: p. 325-336
- Size(s):
- p. 325-336
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract AimSpecies distribution models (SDMs) that integrate presence‐only and presence–absence data offer a promising avenue to improve information on species' geographic distributions. The use of such ‘integrated SDMs’ on a species range‐wide extent has been constrained by the often limited presence–absence data and by the heterogeneous sampling of the presence‐only data. Here, we evaluate integrated SDMs for studying species ranges with a novel expert range map‐based evaluation. We build new understanding about how integrated SDMs address issues of estimation accuracy and data deficiency and thereby offer advantages over traditional SDMs. LocationSouth and Central America. Time Period1979–2017. Major Taxa StudiedHummingbirds. MethodsWe build integrated SDMs by linking two observation models – one for each data type – to the same underlying spatial process. We validate SDMs with two schemes: (i) cross‐validation with presence–absence data and (ii) comparison with respect to the species' whole range as defined with IUCN range maps. We also compare models relative to the estimated response curves and compute the association between the benefit of the data integration and the number of presence records in each data set. ResultsThe integrated SDM accounting for the spatially varying sampling intensity of the presence‐only data was one of the top performing models in both model validation schemes. Presence‐only data alleviated overly large niche estimates, and data integration was beneficial compared to modelling solely presence‐only data for species which had few presence points when predicting the species' whole range. On the community level, integrated models improved the species richness prediction. Main ConclusionsIntegrated SDMs combining presence‐only and presence–absence data are successfully able to borrow strengths from both data types and offer improved predictions of species' ranges. Integrated SDMs can potentially alleviate the impacts of taxonomically and geographically uneven sampling and to leverage the detailed sampling information in presence–absence data.more » « less
-
Abstract As geographic range estimates for the IUCN Red List guide conservation actions, accuracy and ecological realism are crucial. IUCN’s extent of occurrence (EOO) is the general region including the species’ range, while area of occupancy (AOO) is the subset of EOO occupied by the species. Data‐poor species with incomplete sampling present particular difficulties, but species distribution models (SDMs) can be used to predict suitable areas. Nevertheless, SDMs typically employ abiotic variables (i.e., climate) and do not explicitly account for biotic interactions that can impose range constraints. We sought to improve range estimates for data‐poor, parapatric species by masking out areas under inferred competitive exclusion. We did so for two South American spiny pocket mice:Heteromys australis(Least Concern) andHeteromys teleus(Vulnerable due to especially poor sampling), whose ranges appear restricted by competition. For both species, we estimated EOO using SDMs and AOO with four approaches: occupied grid cells, abiotic SDM prediction, and this prediction masked by approximations of the areas occupied by each species’ congener. We made the masks using support vector machines (SVMs) fit with two data types: occurrence coordinates alone; and coordinates along with SDM predictions of suitability. Given the uncertainty in calculating AOO for low‐data species, we made estimates for the lower and upper bounds for AOO, but only make recommendations forH. teleusas its full known range was considered. The SVM approaches (especially the second one) had lower classification error and made more ecologically realistic delineations of the contact zone. ForH. teleus, the lower AOO bound (a strongly biased underestimate) corresponded to Endangered (occupied grid cells), while the upper bounds (other approaches) led to Near Threatened. As we currently lack data to determine the species’ true occupancy within the post‐processed SDM prediction, we recommend that an updated listing forH. teleusinclude these bounds for AOO. This study advances methods for estimating the upper bound of AOO and highlights the need for better ways to produce unbiased estimates of lower bounds. More generally, the SVM approaches for post‐processing SDM predictions hold promise for improving range estimates for other uses in biogeography and conservation.more » « less
-
IntroductionForecasting range shifts in response to climate change requires accurate species distribution models (SDMs), particularly at the margins of species' ranges. However, most studies producing SDMs rely on sparse species occurrence datasets from herbarium records and public databases, along with random pseudoabsences. While environmental covariates used to fit SDMS are increasingly precise due to satellite data, the availability of species occurrence records is still a large source of bias in model predictions. We developed distribution models for hybridizing sister species of western and eastern Joshua trees (Yucca brevifoliaandY. jaegeriana, respectively), iconic Mojave Desert species that are threatened by climate change and habitat loss. MethodsWe conducted an intensive visual grid search of online satellite imagery for 672,043 0.25 km2grid cells to identify the two species' presences and absences on the landscape with exceptional resolution, and field validated 29,050 cells in 15,001 km of driving. We used the resulting presence/absence data to train SDMs for each Joshua tree species, revealing the contemporary environmental gradients (during the past 40 years) with greatest influence on the current distribution of adult trees. ResultsWhile the environments occupied byY. brevifoliaandY. jaegerianawere similar in total aridity, they differed with respect to seasonal precipitation and temperature ranges, suggesting the two species may have differing responses to climate change. Moreover, the species showed differing potential to occupy each other's geographic ranges: modeled potential habitat forY. jaegerianaextends throughout the range ofY. brevifolia, while potential habitat forY. brevifoliais not well represented within the range ofY. jaegeriana. DiscussionBy reproducing the current range of the Joshua trees with high fidelity, our dataset can serve as a baseline for future research, monitoring, and management of this species, including an increased understanding of dynamics at the trailing and leading margins of the species' ranges and potential for climate refugia.more » « less
-
Abstract AimPollen assemblages are commonly used to reconstruct past climates yet have not yet been used to reconstruct past human activities, including deforestation. We aim to assess (i) how pollen assemblages vary across biogeographic and environmental gradients, (ii) the source area of pollen assemblages from lake sediment samples and (iii) which pollen taxa can best be used to quantify deforested landscapes. LocationAmazonia. TaxonPlantae. MethodsPollen assemblages (N = 65) from mud‐water interface samples (representing modern conditions) of lake sediment cores were compared with modern gradients of temperature, precipitation and elevation. Pollen assemblages were also compared with local‐scale estimates of forest cover at 1, 2, 5, 10, 20 and 40 km buffers around each lake. ResultsOver 250 pollen types were identified in the samples, and pollen assemblages were able to accurately differentiate biogeographic regions across the basin, corresponding with gradients in temperature and precipitation. Poaceae percentages were the best predictor of deforestation, and had a significant negative relationship with forest cover estimates. These relationships were strongest for the 1 km buffer area, weakening as buffer sizes increased. Main conclusionsThe diverse Amazonian pollen assemblages strongly reflect environmental gradients, and percentages of Poaceae best reflect local‐scale variability in forest cover. Our results of modern pollen‐landscape relationships can be used to provide a foundation for quantitative reconstructions of climate and deforestation in Amazonia.more » « less
An official website of the United States government
