Abstract Rapid climate change is threatening biodiversity via habitat loss, range shifts, increases in invasive species, novel species interactions, and other unforeseen changes. Coastal and estuarine species are especially vulnerable to the impacts of climate change due to sea level rise and may be severely impacted in the next several decades. Species distribution modeling can project the potential future distributions of species under scenarios of climate change using bioclimatic data and georeferenced occurrence data. However, models projecting suitable habitat into the future are impossible to ground truth. One solution is to develop species distribution models for the present and project them to periods in the recent past where distributions are known to test model performance before making projections into the future. Here, we develop models using abiotic environmental variables to quantify the current suitable habitat available to eight Neotropical coastal species: four mangrove species and four salt marsh species. Using a novel model validation approach that leverages newly available monthly climatic data from 1960 to 2018, we project these niche models into two time periods in the recent past (i.e., within the past half century) when either mangrove or salt marsh dominance was documented via other data sources. Models were hindcast‐validated and then used to project the suitable habitat of all species at four time periods in the future under a model of climate change. For all future time periods, the projected suitable habitat of mangrove species decreased, and suitable habitat declined more severely in salt marsh species. 
                        more » 
                        « less   
                    
                            
                            Integrating genomic data and simulations to evaluate alternative species distribution models and improve predictions of glacial refugia and future responses to climate change
                        
                    
    
            Climate change poses a threat to biodiversity, and it is unclear whether species can adapt to or tolerate new conditions, or migrate to areas with suitable habitats. Reconstructions of range shifts that occurred in response to environmental changes since the last glacial maximum (LGM) from species distribution models (SDMs) can provide useful data to inform conservation efforts. However, different SDM algorithms and climate reconstructions often produce contrasting patterns, and validation methods typically focus on accuracy in recreating current distributions, limiting their relevance for assessing predictions to the past or future. We modeled historically suitable habitat for the threatened North American tree green ashFraxinus pennsylvanicausing 24 SDMs built using two climate models, three calibration regions, and four modeling algorithms. We evaluated the SDMs using contemporary data with spatial block cross‐validation and compared the relative support for alternative models using a novel integrative method based on coupled demographic‐genetic simulations. We simulated genomic datasets using habitat suitability of each of the 24 SDMs in a spatially‐explicit model. Approximate Bayesian computation (ABC) was then used to evaluate the support for alternative SDMs through comparisons to an empirical population genomic dataset. Models had very similar performance when assessed with contemporary occurrences using spatial cross‐validation, but ABC model selection analyses consistently supported SDMs based on the CCSM climate model, an intermediate calibration extent, and the generalized linear modeling algorithm. Finally, we projected the future range of green ash under four climate change scenarios. Future projections using the SDMs selected via ABC suggest only minor shifts in suitable habitat for this species, while some of those that were rejected predicted dramatic changes. Our results highlight the different inferences that may result from the application of alternative distribution modeling algorithms and provide a novel approach for selecting among a set of competing SDMs with independent data. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1924599
- PAR ID:
- 10522044
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecography
- ISSN:
- 0906-7590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract AimBiogeographers have used three primary data types to examine shifts in tree ranges in response to past climate change: fossil pollen, genetic data and contemporary occurrences. Although recent efforts have explored formal integration of these types of data, we have limited understanding of how integration affects estimates of range shift rates and their uncertainty. We compared estimates of biotic velocity (i.e. rate of species' range shifts) using each data type independently to estimates obtained using integrated models. LocationEastern North America. TaxonFraxinus pennsylvanicaMarshall (green ash). MethodsUsing fossil pollen, genomic data and modern occurrence data, we estimated biotic velocities directly from 24 species distribution models (SDMs) and 200 pollen surfaces created with a novel Bayesian spatio‐temporal model. We compared biotic velocity from these analyses to estimates based on coupled demographic‐coalescent simulations and Approximate Bayesian Computation that combined fossil pollen and SDMs with population genomic data collected across theF. pennsylvanicarange. ResultsPatterns and magnitude of biotic velocity over time varied by the method used to estimate past range dynamics. Estimates based on fossil pollen yielded the highest rates of range movement. Overall, integrating genetic data with other data types in our simulation‐based framework reduced apparent uncertainty in biotic velocity estimates and resulted in greater similarity in estimates between SDM‐ and pollen‐integrated analyses. Main ConclusionsBy reducing uncertainty in our assessments of range shifts, integration of data types improves our understanding of the past distribution of species. Based on these results, we propose further steps to reach the integration of these three lines of biogeographical evidence into a unified analytical framework.more » « less
- 
            Abstract Understanding the ranges of rare and endangered species is central to conserving biodiversity in the Anthropocene. Species distribution models (SDMs) have become a common and powerful tool for analyzing species–environment relationships across geographic space. Although evaluating the distribution of rare species is integral to their conservation, this can be difficult when limited distribution data are available. Community science platforms, such as iNaturalist, have emerged as alternative sources for species occurrence data. Although these observations are often thought to be of lower quality than those of natural history collections, they may have potential for improving SDMs for species with few occurrence records from collections. Here, we investigate the utility of iNaturalist data for developing SDMs for a rare high‐elevation plant,Telesonix jamesii. Because methods for modeling rare species are limited in the literature, five different modeling techniques were considered, including profile methods, statistical models, and machine learning algorithms. The inclusion of iNaturalist data doubled the number of usable records forT. jamesii.We found that a random forest (RF) model using ensemble training data performed the highest of any model (area under curve = 0.98). We then compared the performance of RF models that use only natural history training data and those that use a combination of natural history (herbarium specimens) and iNaturalist training data. All models heavily relied on climate data (mean temperature of driest quarter, and precipitation of the warmest quarter), indicating that this species is under threat as climate continues to change. Validation datasets affected model fits as well. Models using only herbarium data performed slightly poorer when evaluated with cross‐validation than when validated externally with iNaturalist data. This study can serve as a model for future SDM studies of species with similar data limitations.more » « less
- 
            Abstract Species distribution models (SDMs) have become increasingly popular for making ecological inferences, as well as predictions to inform conservation and management. In predictive modeling, practitioners often use correlative SDMs that only evaluate a single spatial scale and do not account for differences in life stages. These modeling decisions may limit the performance of SDMs beyond the study region or sampling period. Given the increasing desire to develop transferable SDMs, a robust framework is necessary that can account for known challenges of model transferability. Here, we propose a comparative framework to develop transferable SDMs, which was tested using satellite telemetry data from green turtles (Chelonia mydas). This framework is characterized by a set of steps comparing among different models based on (1) model algorithm (e.g., generalized linear model vs. Gaussian process regression) and formulation (e.g., correlative model vs. hybrid model), (2) spatial scale, and (3) accounting for life stage. SDMs were fitted as resource selection functions and trained on data from the Gulf of Mexico with bathymetric depth, net primary productivity, and sea surface temperature as covariates. Independent validation datasets from Brazil and Qatar were used to assess model transferability. A correlative SDM using a hierarchical Gaussian process regression (HGPR) algorithm exhibited greater transferability than a hybrid SDM using HGPR, as well as correlative and hybrid forms of hierarchical generalized linear models. Additionally, models that evaluated habitat selection at the finest spatial scale and that did not account for life stage proved to be the most transferable in this study. The comparative framework presented here may be applied to a variety of species, ecological datasets (e.g., presence‐only, presence‐absence, mark‐recapture), and modeling frameworks (e.g., resource selection functions, step selection functions, occupancy models) to generate transferable predictions of species–habitat associations. We expect that SDM predictions resulting from this comparative framework will be more informative management tools and may be used to more accurately assess climate change impacts on a wide array of taxa.more » « less
- 
            IntroductionForecasting range shifts in response to climate change requires accurate species distribution models (SDMs), particularly at the margins of species' ranges. However, most studies producing SDMs rely on sparse species occurrence datasets from herbarium records and public databases, along with random pseudoabsences. While environmental covariates used to fit SDMS are increasingly precise due to satellite data, the availability of species occurrence records is still a large source of bias in model predictions. We developed distribution models for hybridizing sister species of western and eastern Joshua trees (Yucca brevifoliaandY. jaegeriana, respectively), iconic Mojave Desert species that are threatened by climate change and habitat loss. MethodsWe conducted an intensive visual grid search of online satellite imagery for 672,043 0.25 km2grid cells to identify the two species' presences and absences on the landscape with exceptional resolution, and field validated 29,050 cells in 15,001 km of driving. We used the resulting presence/absence data to train SDMs for each Joshua tree species, revealing the contemporary environmental gradients (during the past 40 years) with greatest influence on the current distribution of adult trees. ResultsWhile the environments occupied byY. brevifoliaandY. jaegerianawere similar in total aridity, they differed with respect to seasonal precipitation and temperature ranges, suggesting the two species may have differing responses to climate change. Moreover, the species showed differing potential to occupy each other's geographic ranges: modeled potential habitat forY. jaegerianaextends throughout the range ofY. brevifolia, while potential habitat forY. brevifoliais not well represented within the range ofY. jaegeriana. DiscussionBy reproducing the current range of the Joshua trees with high fidelity, our dataset can serve as a baseline for future research, monitoring, and management of this species, including an increased understanding of dynamics at the trailing and leading margins of the species' ranges and potential for climate refugia.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    