skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of Van Hove singularity systems in ternary borides
Abstract A computational search for stable structures among both α and β phases of ternary ATB4borides (A= Mg, Ca, Sr, Ba, Al, Ga, and Zn,Tis3dor4dtransition elements) has been performed. We found that α-ATB4compounds withA= Mg, Ca, Al, andT = V, Cr, Mn, Fe, Ni, and Co form a family of structurally stable or almost stable materials. These systems are metallic in non-magnetic states and characterized by the formation of the localized molecular-like state of3dtransition metal atom dimers, which leads to the appearance of numerous Van Hove singularities in the electronic spectrum. The closeness of such singularities to the Fermi level can be easily tuned by electron doping. For the atoms in the middle of the3drow (Cr, Mn, and Fe), these singularities led to magnetic instabilities and magnetic ground states with a weakly metallic or semiconducting nature. Such states appear as non-trivial coexistence of the different spin ladders formed by magnetic dimers of3delements. These magnetic states can be characterized as an analog of the spin glass state. Experimental attempts to produce MgFeB4and associated challenges are discussed, and promising directions for further synthetic studies are formulated.  more » « less
Award ID(s):
2132666
PAR ID:
10473306
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
npj Computational Materials
Volume:
9
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Single crystals of disordered Mn4–xCrxAl11have been synthesized via the flux method. EDS on several crystals of various sizes and shapes revealed an average molar ratio of 17:9:74 for Mn:Cr:Al, while x-ray diffraction on three different crystals yield compositions Mn2.26Cr1.74Al11(Mn4–xCrxAl11,x= 1.74), Mn0.83Cr3.17Al11, and Mn1.07Cr2.93Al11. This compound crystallizes in space group P 1 ¯ , isostructural with both Mn4Al11and Cr4Al11. Magnetic measurements on several crystals show that this disordered compound is ferrimagnetic with a low effective moment of μ eff 1.012 ± 0.004 μ B / f . u . and a non-reachable transition temperature. Density functional theory calculations display opening of a bandgap in the spin-up channel near the Fermi level with increasing Cr content, an indication of half-metallicity. 
    more » « less
  2. Abstract Using multielement abundances from the Sloan Digital Sky Survey APOGEE survey, we investigate the origin of abundance variations in Milky Way (MW) disk stars on the “high-αplateau,” with −0.5 ≤ [Mg/H] ≤  −0.1 and 0.25 ≤ [Mg/Fe] ≤ 0.35. The elevated [α/Fe] ratios of these stars imply low enrichment contributions from Type Ia supernovae (SN Ia), but it is unclear whether their abundance patterns reflect pure core-collapse supernova (CCSN) enrichment. We find that plateau stars with higher [Fe/Mg] ratios also have higher [X/Mg] ratios for other iron-peak elements, suggesting that the [Fe/Mg] variations in the plateau population do reflect variations in the SN Ia/CCSN ratio. To quantify this finding, we fit the observed abundance patterns with a two-process model, calibrated on the full MW disk, which represents each star’s abundances as the sum of a prompt CCSN process with amplitudeAccand a delayed SN Ia process with amplitudeAIa. This model is generally successful at explaining the observed trends of [X/Mg] withAIa/Acc, which are steeper for elements with a large SN Ia contribution (e.g., Cr, Ni, Mn) and flatter for elements with low SN Ia contribution (e.g., O, Si, Ca). Our analysis does not determine the value of [Mg/Fe] corresponding to pure CCSN enrichment, but it should be at least as high as the upper edge of the plateau at [Mg/Fe] ≈ 0.35, and could be significantly higher. Compared to the two-process predictions, the observed trends of [X/Mg] withAIa/Accare steeper for (C+N) but shallower for Ce, providing intriguing but contradictory clues about asymptotic giant branch enrichment in the early disk. 
    more » « less
  3. Abstract We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies. 
    more » « less
  4. The emergence of novel magnetic states becomes more likely when the inversion symmetry of the crystal field, relative to the center between two spins, is broken. We propose that placing magnetic spins in inequivalent sites in a polar lattice can promote a realization of nontrivial magnetic states and associated magnetic properties. To test our hypothesis, we study Fe2(SeO3)(H2O)3 as a model system that displays two distinct Fe(1) and Fe(2) magnetic sites in a polar structure (R3c space group). At low fields μ0H≤ 0.06 T, the material undergoes an antiferromagnetic ordering with TN1 = 77 K and a second transition at TN2≈ 4 K. At μ0H≥ 0.06 T and 74 K ≤T≤ 76 K, a positive entropy change of ∼0.12 mJ mol−1 K−1 can be associated with a metamagnetic transition to possibly nontrivial spin states. At zero field, Fe(1) is nearly fully ordered at T≈ 25 K, while Fe(2) features magnetic frustration down to T = 4 K. The magnetic ground state, a result corroborated by single-crystal neutron diffraction and 57Fe Mössbauer spectroscopy, is a noncollinear antiparallel arrangement of ferrimagnetic Fe(1)–Fe(2) dimers along the c-axis. The results demonstrate that placing distinct magnetic sites in a polar crystal lattice can enable a new pathway to modifying spin, orbital, and lattice degrees of freedom for unconventional magnetism. 
    more » « less
  5. Abstract Transitions between distinct obstructed atomic insulators (OAIs) protected by crystalline symmetries, where electrons form molecular orbitals centering away from the atom positions, must go through an intermediate metallic phase. In this work, we find that the intermediate metals will become a scale-invariant critical metal phase (CMP) under certain types of quenched disorder that respect the magnetic crystalline symmetries on average. We explicitly construct models respecting averageC2zT, m, andC4zTand show their scale-invariance under chemical potential disorder by the finite-size scaling method. Conventional theories, such as weak anti-localization and topological phase transition, cannot explain the underlying mechanism. A quantitative mapping between lattice and network models shows that the CMP can be understood through a semi-classical percolation problem. Ultimately, we systematically classify all the OAI transitions protected by (magnetic) groups$$Pm,P{2}^{{\prime} },P{4}^{{\prime} }$$ P m , P 2 , P 4 , and$$P{6}^{{\prime} }$$ P 6 with and without spin-orbit coupling, most of which can support CMP. 
    more » « less