skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precipitation, Not Land Use, Primarily Determines the Composition of Both Plant and Phyllosphere Fungal Communities
Plant communities and fungi inhabiting their phyllospheres change along precipitation gradients and often respond to changes in land use. Many studies have focused on the changes in foliar fungal communities on specific plant species, however, few have addressed the association between whole plant communities and their phyllosphere fungi. We sampled plant communities and associated phyllosphere fungal communities in native prairie remnants and post-agricultural sites across the steep precipitation gradient in the central plains in Kansas, USA. Plant community cover data and MiSeq ITS2 metabarcode data of the phyllosphere fungal communities indicated that both plant and fungal community composition respond strongly to mean annual precipitation (MAP), but less so to land use (native prairie remnants vs. post-agricultural sites). However, plant and fungal diversity were greater in the native remnant prairies than in post-agricultural sites. Overall, both plant and fungal diversity increased with MAP and the communities in the arid and mesic parts of the gradient were distinct. Analyses of the linkages between plant and fungal communities (Mantel and Procrustes tests) identified strong correlations between the composition of the two. However, despite the strong correlations, regression models with plant richness, diversity, or composition (ordination axis scores) and land use as explanatory variables for fungal diversity and evenness did not improve the models compared to those with precipitation and land use (ΔAIC < 2), even though the explanatory power of some plant variables was greater than that of MAP as measured by R2. Indicator taxon analyses suggest that grass species are the primary taxa that differ in the plant communities. Similar analyses of the phyllosphere fungi indicated that many plant pathogens are disproportionately abundant either in the arid or mesic environments. Although decoupling the drivers of fungal communities and their composition – whether abiotic or host-dependent – remains a challenge, our study highlights the distinct community responses to precipitation and the tight tracking of the plant communities by their associated fungal symbionts.  more » « less
Award ID(s):
2025849 1656006
PAR ID:
10473337
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Fungal Biology
Volume:
3
ISSN:
2673-6128
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Plant leaves harbor complex microbial communities that influence plant health and productivity. Nevertheless, a detailed understanding of phyllosphere community assembly and drivers is needed, particularly for phyllosphere fungi. Here, we investigated seasonal dynamics of epiphytic phyllosphere fungal communities in switchgrass (Panicum virgatum L.), a focal bioenergy crop. We also leverage previously published data on switchgrass phyllosphere bacterial communities from the same experimental plants, allowing us to compare fungal and bacterial dynamics and explore interdomain network associations in the switchgrass phyllosphere. Overall, we found a strong impact of sampling date on fungal community composition, with multiple taxonomic levels exhibiting clear temporal patterns in relative abundance. In addition, leaf nitrogen concentration, leaf dry matter content, plant height, and minimum daily air temperature explained significant variation in phyllosphere fungal communities, likely due to their correlation with sampling date. Finally, among the core taxa, fungi–bacteria network associations were much more common than bacteria–bacteria associations, suggesting the importance of interdomain phylogenetic diversity in microbiome assembly. Although our findings highlight the complexity of phyllosphere microbiome assembly, the clear temporal patterns in lineage-specific fungal abundances give promise to the potential for accurately predicting shifts in fungal phyllosphere communities throughout the growing season, a key research priority for sustainable agriculture. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  2. Human land use disturbance is a major contributor to the loss of natural plant communities, and this is particularly true in areas used for agriculture, such as the Midwestern tallgrass prairies of the United States. Previous work has shown that arbuscular mycorrhizal fungi (AMF) additions can increase native plant survival and success in plant community restorations, but the dispersal of AMF in these systems is poorly understood. In this study, we examined the dispersal of AMF taxa inoculated into four tallgrass prairie restorations. At each site, we inoculated native plant species with greenhouse-cultured native AMF taxa or whole soil collected from a nearby unplowed prairie. We monitored AMF dispersal, AMF biomass, plant growth, and plant community composition, at different distances from inoculation. In two sites, we assessed the role of plant hosts in dispersal, by placing known AMF hosts in a “bridge” and “island” pattern on either side of the inoculation points. We found that AMF taxa differ in their dispersal ability, with some taxa spreading to 2-m in the first year and others remaining closer to the inoculation point. We also found evidence that AMF spread altered non-inoculated neighboring plant growth and community composition in certain sites. These results represent the most comprehensive attempt to date to evaluate AMF spread. 
    more » « less
  3. Ecological restoration efforts can increase the diversity and function of degraded areas. However, current restoration practices cannot typically reestablish the full diversity and species composition of remnant plant communities. Restoration quality can be improved by reintroducing key organisms from the native plant microbiome. In particular, root symbionts called arbuscular mycorrhizal (AM) fungi are critical in shaping grassland communities, but are sensitive to anthropogenic disturbance, which may pose a problem for grassland restoration. Studies of mycorrhizal amendments include inoculation densities of 2–10,000 kg of inocula per hectare. These studies report variable results that may depend on inocula volume, composition, or nativeness. Here we test eight different densities of native AM fungal amendment, ranging from 0 to 8,192 kg/ha in a newly installed prairie restoration. We found that native plant establishment benefited from native mycorrhizal inocula, resulting in improvements in native plant abundance, richness, and community diversity. Moreover, the application of very low densities of native mycorrhizal inocula, as suggested on commercial mycorrhizal products, were ineffective, and higher concentrations were required to benefit native plant abundance and community diversity. These data suggest that higher densities of mycorrhizal amendment or perhaps alternative distribution methods may be required to maximize benefits of native mycorrhizal amendments in restoration practices. 
    more » « less
  4. Abstract Nutrient exchange forms the basis of the ancient symbiotic relationship that occurs between most land plants and arbuscular mycorrhizal (AM) fungi. Plants provide carbon (C) to AM fungi and fungi provide the plant with nutrients such as nitrogen (N) and phosphorous (P). Nutrient addition can alter this symbiotic coupling in key ways, such as reducing AM fungal root colonization and changing the AM fungal community composition. However, environmental parameters that differentiate ecosystems and drive plant distribution patterns (e.g., pH, moisture), are also known to impact AM fungal communities. Identifying the relative contribution of environmental factors impacting AM fungal distribution patterns is important for predicting biogeochemical cycling patterns and plant‐microbe relationships across ecosystems. To evaluate the relative impacts of local environmental conditions and long‐term nutrient addition on AM fungal abundance and composition across grasslands, we studied experimental plots amended for 10 years with N, P, or N and P fertilizer in different grassland ecosystem types, including tallgrass prairie, montane, shortgrass prairie, and desert grasslands. Contrary to our hypothesis, we found ecosystem type, not nutrient treatment, was the main driver of AM fungal root colonization, diversity, and community composition, even when accounting for site‐specific nutrient limitations. We identified several important environmental drivers of grassland ecosystem AM fungal distribution patterns, including aridity, mean annual temperature, root moisture, and soil pH. This work provides empirical evidence for niche partitioning strategies of AM fungal functional guilds and emphasizes the importance of long‐term, large scale research projects to provide ecologically relevant context to nutrient addition studies. 
    more » « less
  5. Abstract The consequences of land‐use change for savanna biodiversity remain undocumented in most regions of tropical Asia. One such region is western Maharashtra, India, where old‐growth savannas occupy a broad rainfall gradient and are increasingly rare due to agricultural conversion and afforestation.To understand the consequences of land‐use change, we sampled herbaceous plant communities of old‐growth savannas and three alternative land‐use types: tree plantations, tillage agriculture and agricultural fallows (n = 15 sites per type). Study sites spanned 457 to 1954 mm of mean annual precipitation—corresponding to the typical rainfall range of mesic savannas globally.Across the rainfall gradient, we found consistent declines in old‐growth savanna plant communities due to land‐use change. Local‐scale native species richness dropped from a mean of 12 species/m2in old‐growth savannas to 8, 6 and 3 species/m2in tree plantations, fallows and tillage agriculture, respectively. Cover of native plants declined from a mean of 49% in old‐growth savannas to 27% in both tree plantations and fallows, and 4% in tillage agriculture. Reduced native cover coincided with increased cover of invasive species in tree plantations (18%), fallows (18%) and tillage agriculture (3%).In analyses of community composition, tillage agriculture was most dissimilar to old‐growth savannas, while tree plantations and fallows showed intermediate dissimilarity. These compositional changes were driven partly by the loss of characteristic savanna species: 65 species recorded in old‐growth savannas were absent in other land uses. Indicator analysis revealed 21 old‐growth species, comprised mostly of native savanna specialists. Indicators of tree plantations (nine species) and fallows (13 species) were both invasive and native species, while the two indicators of tillage agriculture were invasive. As reflective of declines in savanna communities, mean native perennial graminoid cover of 27% in old‐growth savannas dropped to 9%, 7%, and 0.1% in tree plantations, fallows and tillage agriculture, respectively.Synthesis. Agricultural conversion and afforestation of old‐growth savannas in India destroys and degrades herbaceous plant communities that do not spontaneously recover on fallowed land. Efforts to conserve India's native biodiversity should encompass the country's widespread savanna biome and seek to limit conversion of irreplaceable old‐growth savannas. 
    more » « less