skip to main content


Title: Singly-excited resonant open quantum system Tavis-Cummings model with quantum circuit mapping
Abstract

Tavis-Cummings (TC) cavity quantum electrodynamical effects, describing the interaction ofNatoms with an optical resonator, are at the core of atomic, optical and solid state physics. The full numerical simulation of TC dynamics scales exponentially with the number of atoms. By restricting the open quantum system to a single excitation, typical of experimental realizations in quantum optics, we analytically solve the TC model with an arbitrary number of atoms with linear complexity. This solution allows us to devise the Quantum Mapping Algorithm of Resonator Interaction withNAtoms (Q-MARINA), an intuitive TC mapping to a quantum circuit with linear space and time scaling, whoseN+1 qubits represent atoms and a lossy cavity, while the dynamics is encoded through 2Nentangling gates. Finally, we benchmark the robustness of the algorithm on a quantum simulator and superconducting quantum processors against the quantum master equation solution on a classical computer.

 
more » « less
Award ID(s):
2047564
PAR ID:
10473447
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step to study semiconductor quantum optics. Here we report on the signature of a coherent interaction between a two-dimensional excitonic transition in monolayer MoSe2and a zero-dimensional, ultra-low mode volume (Vm ∼ 2(λ/n)3) on-chip photonic crystal nanocavity. This coherent interaction manifests as a dispersive shift of the cavity transmission spectrum, when the exciton-cavity detuning is decreased via temperature tuning. The exciton-cavity coupling is estimated to be ≈6.5 meV, with a cooperativity of ≈4.0 at 80 K, showing our material system is on the verge of strong coupling. The small mode-volume of the resonator is instrumental in reaching the strongly nonlinear regime, while on-chip cavities will help create a scalable quantum photonic platform.

     
    more » « less
  2. Abstract

    Optomechanical systems offer new opportunities in quantum information processing and quantum sensing. Many solid-state quantum devices operate at millikelvin temperatures—however, it has proven challenging to operate nanoscale optomechanical devices at these ultralow temperatures due to their limited thermal conductance and parasitic optical absorption. Here, we present a two-dimensional optomechanical crystal resonator capable of achieving large cooperativityCand small effective bath occupancynb, resulting in a quantum cooperativityCeff ≡ C/nb > 1 under continuous-wave optical driving. This is realized using a two-dimensional phononic bandgap structure to host the optomechanical cavity, simultaneously isolating the acoustic mode of interest in the bandgap while allowing heat to be removed by phonon modes outside of the bandgap. This achievement paves the way for a variety of applications requiring quantum-coherent optomechanical interactions, such as transducers capable of bi-directional conversion of quantum states between microwave frequency superconducting quantum circuits and optical photons in a fiber optic network.

     
    more » « less
  3. We explore digital quantum simulation of the dynamics ofNemitters coupled to an optical cavity (Tavis-Cummings model) on superconducting quantum hardware and successfully mitigate errors using randomized compiling and noiseless output extrapolation methods.

     
    more » « less
  4. Abstract

    The Dicke model—a paradigmatic example of superradiance in quantum optics—describes an ensemble of atoms which are collectively coupled to a leaky cavity mode. As a result of the cooperative nature of these interactions, the system’s dynamics is captured by the behavior of a single mean-field, collective spin. In this mean-field limit, it has recently been shown that the interplay between photon losses and periodic driving of light–matter coupling can lead to time-crystalline-like behavior of the collective spin (Gonget al2018Phys. Rev. Lett.120040404). In this work, we investigate whether such a Dicke time crystal (TC) is stable to perturbations that explicitly break the mean-field solvability of the conventional Dicke model. In particular, we consider the addition of short-range interactions between the atoms which breaks the collective coupling and leads to complex many-body dynamics. In this context, the interplay between periodic driving, dissipation and interactions yields a rich set of dynamical responses, including long-lived and metastable Dicke-TCs, where losses can cool down the many-body heating resulting from the continuous pump of energy from the periodic drive. Specifically, when the additional short-range interactions are ferromagnetic, we observe time crystalline behavior at non-perturbative values of the coupling strength, suggesting the possible existence of stable dynamical order in a driven-dissipative quantum many-body system. These findings illustrate the rich nature of novel dynamical responses with many-body character in quantum optics platforms.

     
    more » « less
  5. Abstract

    The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulating the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quantum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify a large number of local conserved charges in the model. We then reveal a mapping between the minimal quantum breakdown model in certain charge sectors and a quantum link model which simulates theU(1) lattice gauge theory and show that the local conserved charges map to the gauge symmetry generators. A special charge sector of the model further maps to the PXP model, which shows quantum many-body scars. This mapping unveils the rich dynamics in different Krylov subspaces characterized by different gauge configurations in the quantum breakdown model.

     
    more » « less