Abstract Tavis-Cummings (TC) cavity quantum electrodynamical effects, describing the interaction ofNatoms with an optical resonator, are at the core of atomic, optical and solid state physics. The full numerical simulation of TC dynamics scales exponentially with the number of atoms. By restricting the open quantum system to a single excitation, typical of experimental realizations in quantum optics, we analytically solve the TC model with an arbitrary number of atoms with linear complexity. This solution allows us to devise the Quantum Mapping Algorithm of Resonator Interaction withNAtoms (Q-MARINA), an intuitive TC mapping to a quantum circuit with linear space and time scaling, whoseN+1 qubits represent atoms and a lossy cavity, while the dynamics is encoded through 2Nentangling gates. Finally, we benchmark the robustness of the algorithm on a quantum simulator and superconducting quantum processors against the quantum master equation solution on a classical computer.
more »
« less
This content will become publicly available on December 22, 2025
Digital Quantum Simulation of Cavity Quantum Electrodynamics: Insights from Superconducting and Trapped Ion Quantum Testbeds
We explore the potential for hybrid development of quantum hardware where currently available quantum computers simulate open Cavity Quantum Electrodynamical (CQED) systems for applications in optical quantum communication, simulation and computing. Our simulations make use of a recent quantum algorithm that maps the dynamics of a singly excited open Tavis-Cummings model containing N atoms coupled to a lossy cavity. We report the results of executing this algorithm on two noisy intermediate-scale quantum computers: a superconducting processor and a trapped ion processor, to simulate the population dynamics of an open CQED system featuring N = 3 atoms. By applying technology-specific transpilation and error mitigation techniques, we minimize the impact of gate errors, noise, and decoherence in each hardware platform, obtaining results which agree closely with the exact solution of the system. These results can be used as a recipe for efficient and platform-specific quantum simulation of cavity-emitter systems on contemporary and future quantum computers.
more »
« less
- Award ID(s):
- 2047564
- PAR ID:
- 10567837
- Publisher / Repository:
- arxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantum cellular automata (QCA) evolve qubits in a quantum circuit depending only on the states of their neighborhoods and model how rich physical complexity can emerge from a simple set of underlying dynamical rules. The inability of classical computers to simulate large quantum systems hinders the elucidation of quantum cellular automata, but quantum computers offer an ideal simulation platform. Here, we experimentally realize QCA on a digital quantum processor, simulating a one-dimensional Goldilocks rule on chains of up to 23 superconducting qubits. We calculate calibrated and error-mitigated population dynamics and complex network measures, which indicate the formation of small-world mutual information networks. These networks decohere at fixed circuit depth independent of system size, the largest of which corresponding to 1,056 two-qubit gates. Such computations may enable the employment of QCA in applications like the simulation of strongly-correlated matter or beyond-classical computational demonstrations.more » « less
-
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.more » « less
-
Abstract Time evolution and scattering simulation in phenomenological models are of great interest for testing and validating the potential for near-term quantum computers to simulate quantum field theories. Here, we simulate one-particle propagation and two-particle scattering in the one-dimensional transverse Ising model for 3 and 4 spatial sites with periodic boundary conditions on a quantum computer. We use the quantum Lanczos algorithm to obtain all energy levels and corresponding eigenstates of the system. We simplify the quantum computation by taking advantage of the symmetries of the system. These results enable us to compute one- and two-particle transition amplitudes, particle numbers for spatial sites, and the transverse magnetization as functions of time. The quantum circuits were executed on various IBM Q superconducting hardware. The experimental results are in very good agreement with the values obtained using exact diagonalization.more » « less
-
Abstract Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are best defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation.more » « less
An official website of the United States government
