skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extremely-Low Frequency (ELF) Radio Sensing of Unmanned Aerial Systems
This paper describes RF-based detection of un-manned aerial systems (UAS) without using transmit signals. The proposed scheme uses a sensitive magnetometer and digital signal processing algorithm to enable robust detection of high-torque/weig h t ratio rare earth magnet-based electric motors that are the enabling technology in electrical UAS. Preliminary experimental results with a 1 m^2 receive coil show reliable detection of a small UAS at distances of several meters.  more » « less
Award ID(s):
1904382
PAR ID:
10473485
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-946815-15-6
Page Range / eLocation ID:
115 to 116
Format(s):
Medium: X
Location:
Boulder, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ContextUnoccupied aerial systems/vehicles (UAS/UAV, a.k.a. drones) have become an increasingly popular tool for ecological research. But much of the recent research is concerned with developing mapping and detection approaches, with few studies attempting to link UAS data to ecosystem processes and function. Landscape ecologists have long used high resolution imagery and spatial analyses to address ecological questions and are therefore uniquely positioned to advance UAS research for ecological applications. ObjectivesThe review objectives are to: (1) provide background on how UAS are used in landscape ecological studies, (2) identify major advancements and research gaps, and (3) discuss ways to better facilitate the use of UAS in landscape ecology research. MethodsWe conducted a systematic review based on PRISMA guidelines using key search terms that are unique to landscape ecology research. We reviewed only papers that applied UAS data to investigate questions about ecological patterns, processes, or function. ResultsWe summarize metadata from 161 papers that fit our review criteria. We highlight and discuss major research themes and applications, sensors and data collection techniques, image processing, feature extraction and spatial analysis, image fusion and satellite scaling, and open data and software. ConclusionWe observed a diversity of UAS methods, applications, and creative spatial modeling and analysis approaches. Key aspects of UAS research in landscape ecology include modeling wildlife micro-habitats, scaling of ecosystem functions, landscape and geomorphic change detection, integrating UAS with historical aerial and satellite imagery, and novel applications of spatial statistics. 
    more » « less
  2. With an increase in the use of Unmanned Aircraft Systems (UAS) and the inevitable integration of UAS in every imaginable industry, there is a need for enhanced situational awareness and information sharing. Traditional approaches are not sufficient for UAS as they are typically designed for human involvement in the decision-making process. Novel solutions based on variety of sensors are being developed for object detection and avoidance. This paper presents UAS-to-UAS (U2U) communication as a means to enhancing situational awareness and safety in the airspace. U2U communication is essential for enabling UAS to operate cooperatively, avoid collisions, and respond to dynamic scenarios in the airspace. As airspace is a shared resource regulated by federal agencies, such as the Federal Aviation Administration (FAA) in the United States, certain questions, such as which aircraft has the right of way, need to be addressed unambiguously. This paper focuses on the philosophy of U2U communications using the five use-case scenarios proposed by standard organizations. The outcome of this research serves as a potential input and guidance for regulatory agencies. 
    more » « less
  3. Unmanned Aerial Systems (UAS) heavily depend on the Global Positioning System (GPS) for navigation. However, the unencrypted civilian GPS signals are subject to different types of threats, including GPS spoofing attacks. In this paper, we evaluate five instance-based learning models for GPS spoofing detection in UAS, namely K Nearest Neighbor, Radius Neighbor, Linear Support Vector Machine (SVM), C-SVM, and Nu-SVM. We used software-defined radio units to collect and extract features from satellite signals. Then, we simulated three types of GPS spoofing attacks specifically the simplistic, intermediate, and sophisticated attacks. The evaluation results show that Nu-SVM outperforms the other instance learning classifiers in terms of accuracy, probability of detection, probability of false alarm, and probability of misdetection. In addition, the model shows good computational performance regarding memory usage and processing time in the detection phase. 
    more » « less
  4. The security of Unmanned Aerial System (UAS) networks is becoming crucial as their number and application in several fields are increasing every day. For navigation and positioning, the Global Navigation System (GPS) is essential as it provides an accurate location for the UAS. However, since the civilian GPS signals are open and unencrypted, attackers target them in different ways such as spoofing attacks. To address this security concern, we propose a comparison of several tree-based machine learning models, namely Random Forest, Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. In this work, the dataset was built of real GPS signals that were collected using a Software Defined Radio unit and different types of simulated GPS spoofing attacks. The results show that XGBoost has the best accuracy (95.52%) and fastest detection time (2ms), which makes this model appropriate for UAS applications. 
    more » « less
  5. Passive microwave remote sensing plays an essential role in providing valuable information about the Earth’s surface, particularly for agriculture, water management, forestry, and other environmental fields. One of the key requirements for precision agricultural applications is the availability of field- scale high-resolution remote sensing data products. With the recent development of reliable unmanned aircraft systems (UAS), airborne deployment of remote sensing sensors has become more widespread to provide such products. With this in mind, we developed a UAS-based dual H-pol (hori- zontal) and V-pol (vertical) polarized radiometer operating in L-band (1400-1427 MHz). The custom dual-polarized an- tenna acquires surface emission response through a software- defined radio (SDR). This SDR-based system provides full control over the data acquisition parameters such as band- width, sampling frequency, and data size. Radio frequency interference (RFI) poses a significant challenge in radiometric measurements, requiring post-processing of the full-band radiometer data to identify and eliminate RFI-contaminated measurements, thus ensuring accurate Earth emission read- ings.. In this paper, we implemented near-real-time RFI detection onboard during the flight to accelerate the post- processing. The altitude and the speed of the UAS can be varied to achieve desired ground resolution for the measure- ment. This paper presents the full custom design and develop- ment of a lightweight SDR-based UAS-borne radiometer for precision agriculture. Additionally, we introduce the concept of an agile radiometer implemented from a small UAS that can serve as a testbed for both current and future spaceborne missions. 
    more » « less