Large Language Models (LLMs) have become increasingly incorporated into everyday life for many internet users, taking on significant roles as advice givers in the domains of medicine, personal relationships, and even legal matters. The importance of these roles raise questions about how and what responses LLMs make in difficult political and moral domains, especially questions about possible biases. To quantify the nature of potential biases in LLMs, various works have applied Moral Foundations Theory (MFT), a framework that categorizes human moral reasoning into five dimensions: Harm, Fairness, Ingroup Loyalty, Authority, and Purity. Previous research has used the MFT to measure differences in human participants along political, national, and cultural lines. While there has been some analysis of the responses of LLM with respect to political stance in role-playing scenarios, no work so far has directly assessed the moral leanings in the LLM responses, nor have they connected LLM outputs with robust human data. In this paper we analyze the distinctions between LLM MFT responses and existing human research directly, investigating whether commonly available LLM responses demonstrate ideological leanings — either through their inherent responses, straightforward representations of political ideologies, or when responding from the perspectives of constructed human personas. We assess whether LLMs inherently generate responses that align more closely with one political ideology over another, and additionally examine how accurately LLMs can represent ideological perspectives through both explicit prompting and demographic-based role-playing. By systematically analyzing LLM behavior across these conditions and experiments, our study provides insight into the extent of political and demographic dependency in AI-generated responses.
more »
« less
Perspectives on Large Language Models for Relevance Judgment
When asked, large language models (LLMs) like ChatGPT claim that they can assist with relevance judgments but it is not clear whether automated judgments can reliably be used in evaluations of retrieval systems. In this perspectives paper, we discuss possible ways for LLMs to support relevance judgments along with concerns and issues that arise. We devise a human–machine collaboration spectrum that allows to categorize different relevance judgment strategies, based on how much humans rely on machines. For the extreme point of ‘fully automated judgments’, we further include a pilot experiment on whether LLM-based relevance judgments corre- late with judgments from trained human assessors. We conclude the paper by providing opposing perspectives for and against the use of LLMs for automatic relevance judgments, and a compromise per- spective, informed by our analyses of the literature, our preliminary experimental evidence, and our experience as IR researchers
more »
« less
- Award ID(s):
- 1846017
- PAR ID:
- 10473538
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400700736
- Page Range / eLocation ID:
- 39 to 50
- Subject(s) / Keyword(s):
- large language models, relevance judgments, human–machine collaboration, automatic test collections
- Format(s):
- Medium: X
- Location:
- Taipei Taiwan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computational models of verbal analogy and relational similarity judgments can employ different types of vector representations of word meanings (embeddings) generated by machine-learning algorithms. An important question is whether human-like relational processing depends on explicit representations of relations (i.e., representations separable from those of the concepts being related), or whether implicit relation representations suffice. Earlier machine-learning models produced static embeddings for individual words, identical across all contexts. However, more recent Large Language Models (LLMs), which use transformer architectures applied to much larger training corpora, are able to produce contextualized embeddings that have the potential to capture implicit knowledge of semantic relations. Here we compare multiple models based on different types of embeddings to human data concerning judgments of relational similarity and solutions of verbal analogy problems. For two datasets, a model that learns explicit representations of relations, Bayesian Analogy with Relational Transformations (BART), captured human performance more successfully than either a model using static embeddings (Word2vec) or models using contextualized embeddings created by LLMs (BERT, RoBERTa, and GPT-2). These findings support the proposal that human thinking depends on representations that separate relations from the concepts they relate.more » « less
-
When reading narratives, human readers rely on their Theory of Mind (ToM) to infer not only what the characters know from their utterances, but also whether characters are likely to share common ground. As in human conversation, such decisions are not infallible but probabilistic, based on the evidence available in the narrative. By responding on a scale (rather than Yes/No), humans can indicate commitment to their inferences about what characters know (ToM). We use two prompting approaches to explore (i) how well LLM judgments align with human judgments, and (ii) how well LLMs infer the author’s intent from utterances intended to project knowledge in narratives.more » « less
-
Identifying anomalous human spatial trajectory patterns can indicate dynamic changes in mobility behavior with applications in domains like infectious disease monitoring and elderly care. Recent advancements in large language models (LLMs) have demonstrated their ability to reason in a manner akin to humans. This presents significant potential for analyzing temporal patterns in human mobility. In this paper, we conduct empirical studies to assess the capabilities of leading LLMs like GPT-4 and Claude-2 in detecting anomalous behaviors from mobility data, by comparing to specialized methods. Our key findings demonstrate that LLMs can attain reasonable anomaly detection performance even without any specific cues. In addition, providing contextual clues about potential irregularities could further enhances their prediction efficacy. Moreover, LLMs can provide reasonable explanations for their judgments, thereby improving transparency. Our work provides insights on the strengths and limitations of LLMs for human spatial trajectory analysis.more » « less
-
The paper explores the performance of LLMs in the context of multi-dimensional analytic writing assessments, i.e. their ability to provide both scores and comments based on multiple assessment criteria. Using a corpus of literature reviews written by L2 graduate students and assessed by human experts against 9 analytic criteria, we prompt several popular LLMs to perform the same task under various conditions. To evaluate the quality of feedback comments, we apply a novel feedback comment quality evaluation framework. This framework is interpretable, cost-efficient, scalable, and reproducible, compared to existing methods that rely on manual judgments. We find that LLMs can generate reasonably good and generally reliable multi-dimensional analytic assessments. We release our corpus and code\footnote{\url{https://github.com/jaaack-wang/multi-dimensional-analytic-writing-assessments}.} for reproducibility.more » « less
An official website of the United States government

