skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing hybrid vigour using the thermal sensitivity of physiological trade‐offs in tiger salamanders
Abstract Hybridization between species affects biodiversity and population sustainability in numerous ways, many of which depend on the fitness of the hybrid relative to the parental species. Hybrids can exhibit fitter phenotypes compared to the parental lineages, and this ‘hybrid vigour’ can then lead to the extinction of one or both parental lines.In this study, we analysed the relationship between water loss and gas exchange to compare physiological performance among three tiger salamander genotypes—the native California tiger salamander (CTS), the invasive barred tiger salamanders (BTS) and CTS × BTS hybrids across multiple temperatures (13.5°C, 20.5°C and 23.5°C). We developed a new index of performance, the water‐gas exchange ratio (WGER), which we define as the ratio of gas exchange to evaporative water loss (μLVO2/μL H2O). The ratio describes the ability of an organism to support energetically costly activities with high levels of gas exchange while simultaneously limiting water loss to lower desiccation risk. We used flow through respirometry to measure the thermal sensitivity of metabolic rate and resistance to water loss of each salamander genotype to compare indices of physiological performance.We found that temperature had a significant effect on metabolic rate and resistance to water loss, with both traits increasing as temperatures warmed. Across genotypes, we found that hybrids have a higher WGER than the native CTS, owing to a higher metabolic rate despite having a lower resistance to water loss.These results provide a greater insight into the physiological mechanisms driving hybrid vigour and offer a potential explanation for the rapid spread of salamander hybrids. More broadly, our introduction of the WGER may allow for species‐ or lineage‐wide comparisons of physiological performance across changing environmental conditions, highlighting the insight that can be gleaned from multitrait analysis of organism performance. Read the freePlain Language Summaryfor this article on the Journal blog.  more » « less
Award ID(s):
2403865 2039476
PAR ID:
10473547
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
38
Issue:
1
ISSN:
0269-8463
Format(s):
Medium: X Size: p. 143-152
Size(s):
p. 143-152
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Temperature mediates performance in ectotherms, affecting their ability to grow, survive, and reproduce. Aggression and evasion are key examples of thermally dependent behaviors that can impact fitness. However, we know relatively little about how the thermal plasticity of such behaviors varies among close relatives and impacts competitive outcomes. Woodland salamanders (Genus:Plethodon) from the Appalachian Mountains are distributed across wide thermal gradients in accordance with latitude or elevation. These plethodontid (lungless) salamanders compete for space and develop hybrid zones where territories overlap among species. Plethodontids tend to exhibit increased aggression at warmer temperatures, suggesting that as temperatures rise, behavioral interactions may be altered in ways that impact hybrid zone dynamics. It is thus far unclear, however, how salamander hybrids, which may encroach on their parent populations and drive competitive exclusion, respond behaviorally to warming. Here, we used staged bouts to examine the effects of temperature on aggression and evasion in thePlethodon shermaniandPlethodon teyahaleehybrid system from the southern Appalachians. The behavior of salamanders from parent populations, particularlyP. shermani,appears to be more sensitive to thermal changes than that of hybrid individuals. Additionally, evasive behavior was significantly more plastic than aggressive behavior in response to warming. Our results suggest that rising temperatures may increase competition for preferable microhabitats, but the effects on behavior among parental and hybrid salamanders will be asymmetric. Temperature may therefore alter the outcomes of competition, determining which populations can persist under rapid warming. 
    more » « less
  2. Abstract Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.Apart fromA.pseudoplatanusandQ.petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB.pendulaandC.avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental andTPMdata show that leaf xylem is generally no more vulnerable than stem xylem. 
    more » « less
  3. Abstract The fundamental tradeoff between carbon gain and water loss has long been predicted as an evolutionary driver of plant strategies across environments. Nonetheless, challenges in measuring carbon gain and water loss in ways that integrate over leaf lifetime have limited our understanding of the variation in and mechanistic bases of this tradeoff. Furthermore, the microevolution of plant traits within species versus the macroevolution of strategies among closely related species may not be the same, and accordingly, the latter must be addressed using comparative phylogenetic analyses.Here we introduce the concept of ‘integrated metabolic strategy’ (IMS) to describe the ratio between carbon isotope composition (δ13C) and oxygen isotope composition above source water (Δ18O) of leaf cellulose. IMS is a measure of leaf‐level conditions that integrate several mechanisms contributing to carbon gain (δ13C) and water loss (Δ18O) over leaf lifespan, with larger values reflecting higher metabolic efficiency and hence less of a tradeoff. We tested how IMS evolves among closely related yet ecologically diverse milkweed species, and subsequently addressed phenotypic plasticity in response to water availability in species with divergent IMS.Integrated metabolic strategy varied strongly among 20Asclepiasspecies when grown under controlled conditions, and phylogenetic analyses demonstrate species‐specific tradeoffs between carbon gain and water loss. Larger IMS values were associated with species from dry habitats, with larger carboxylation capacity, smaller stomatal conductance and smaller leaves; smaller IMS was associated with wet habitats, smaller carboxylation capacity, larger stomatal conductance and larger leaves. The evolution of IMS was dominated by changes in species’ demand for carbon (δ13C) more so than water conservation (Δ18O). Although some individual physiological traits showed phylogenetic signal, IMS did not.In response to experimental decreases in soil moisture, three species maintained similar IMS across levels of water availability because of proportional increases inδ13C and Δ18O (or little change in either), while one species increased IMS due to disproportional changes inδ13C relative to Δ18O.Synthesis.IMS is a broadly applicable mechanistic tool; IMS variation among and within species may shed light on unresolved questions relating to the evolution and ecology of plant ecophysiological strategies. 
    more » « less
  4. Summary Steady‐state photosyntheticCO2responses (A/Cicurves) are used to assess environmental responses of photosynthetic traits and to predict future vegetative carbon uptake through modeling. The recent development of rapidA/Cicurves (RACiRs) permits faster assessment of these traits by continuously changing [CO2] around the leaf, and may reveal additional photosynthetic properties beyond what is practical or possible with steady‐state methods.Gas exchange necessarily incorporates photosynthesis and (photo)respiration. Each process was expected to respond on different timescales due to differences in metabolite compartmentation, biochemistry and diffusive pathways. We hypothesized that metabolic lags in photorespiration relative to photosynthesis/respiration andCO2diffusional limitations can be detected by varying the rate of change in [CO2] duringRACiR assays. We tested these hypotheses through modeling and experiments at ambient and 2% oxygen.Our data show that photorespiratory delays cause offsets in predictedCO2compensation points that are dependent on the rate of change in [CO2]. Diffusional limitations may reduce the rate of change in chloroplastic [CO2], causing a reduction in apparentRACiR slopes under highCO2ramp rates.MultirateRACiRs may prove useful in assessing diffusional limitations to gas exchange and photorespiratory rates. 
    more » « less
  5. Summary Macroorganisms’ genotypes shape their phenotypes, which in turn shape the habitat available to potential microbial symbionts. This influence of host genotype on microbiome composition has been demonstrated in many systems; however, most previous studies have either compared unrelated genotypes or delved into molecular mechanisms. As a result, it is currently unclear whether the heritability of host‐associated microbiomes follows similar patterns to the heritability of other complex traits.We take a new approach to this question by comparing the microbiomes of diverse maize inbred lines and their F1hybrid offspring, which we quantified in both rhizosphere and leaves of field‐grown plants using 16S‐v4 and ITS1 amplicon sequencing.We show that inbred lines and hybrids differ consistently in the composition of bacterial and fungal rhizosphere communities, as well as leaf‐associated fungal communities. A wide range of microbiome features display heterosis within individual crosses, consistent with patterns for nonmicrobial maize phenotypes. For leaf microbiomes, these results were supported by the observation that broad‐sense heritability in hybrids was substantially higher than narrow‐sense heritability.Our results support our hypothesis that at least some heterotic host traits affect microbiome composition in maize. 
    more » « less