Abstract AimTo determine the historical dynamics of colonization and whether the relative timing of colonization predicts diversification rate in the species‐rich, murine rodent communities of Indo‐Australia. LocationIndo‐Australian Archipelago including the Sunda shelf of continental Asia, Sahul shelf of continental Australia, the Philippines and Wallacea of Indonesia. TaxonOrder Rodentia, Family Muridae. MethodsWe used a fossil‐calibrated molecular phylogeny and Bayesian biogeographical modelling to infer the frequency and temporal sequence of biogeographical transitions among Sunda, Sahul, the Philippines and Wallacea. We estimated diversification rates for each colonizing lineage using a method‐of‐moments estimator of net diversification and Bayesian mixture model estimates of diversification rate shifts. ResultsWe identified 17 biogeographical transitions, including nine originating from Sunda, seven originating from Sulawesi and broader Wallacea and one originating from Sahul. Wallacea was colonized eight times, the Phillipines five times, Sunda twice and Sahul twice. Net diversification rates ranged from 0.2 to 2.12 species/lineage/My with higher rates in secondary and later colonizers than primary colonizers. The highest rates were in the genusRattusand their closest relatives, irrespective of colonization history. Main ConclusionsOur inferences from murines demonstrate once again the substantial role of islands as sources of species diversity in terrestrial vertebrates of the IAA with most speciation events occurring on islands. Sulawesi and broader Wallacea have been a major source of colonists for both island and continental systems. Crossings of Wallace's Line were more common than subsequent transitions across Lydekker's Line to the east. While speciation following colonization of oceanic archipelagos and large islands is consistent with adaptive radiation theory and ideas regarding ecological opportunity, we did not observe a strong signal of incumbency effects. Rather, subsequent colonists of landmasses radiated unhindered by previous radiations.
more »
« less
Phylogenetic relationships of southern Wallacean ranid frogs (Anura: Ranidae: Hylarana)
Frogs in the family Ranidae are diverse in Asia and are thought to have dispersed to the Sahul Shelf approximately 10 million years ago, where they radiated into more than a dozen species. Ranid species in the intervening oceanic islands of Wallacea, such as Hylarana florensis and H. elberti from the Lesser Sundas and H. moluccana from eastern Wallacea, are assumed to belong to the subgenus Papurana, yet this has not been confirmed with molecular data. We analyzed mitochondrial DNA of Hylarana species from five islands spanning the reported ranges of H. florensis and H. elberti and compared them to confirmed Papurana species and closely related subgenera within Hylarana. We find that the Lesser Sunda H. florensis and H. elberti form a clade that is sister to the rest of the Australo-Papuan Papurana assemblage. Species delimitation analyses and divergence time estimates suggest that populations of H. florensis on Lombok may be distinct from those on Flores at the species level. Likewise, populations of H. elberti on Sumba and Timor may be distinct from each other and from those on Wetar, tshe type locality of H. elberti. Samples from Babar Island thought to be members of H. elberti in fact belong to the wide-ranging H. daemeli, which occurs in northern Australia, across New Guinea, and on the neighboring island of Tanimbar. These results suggest that the Lesser Sundas may have served as a stepping-stone for colonization of the Sahul Shelf and that species diversity of Papurana frogs is underestimated in the Lesser Sundas.
more »
« less
- Award ID(s):
- 1652988
- PAR ID:
- 10473809
- Publisher / Repository:
- Zootaxa
- Date Published:
- Journal Name:
- Zootaxa
- Volume:
- 5150
- Issue:
- 4
- ISSN:
- 1175-5326
- Page Range / eLocation ID:
- 591 to 599
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The complex island archipelagoes of Wallacea and Melanesia have provided empirical data behind integral theories in evolutionary biology, including allopatric speciation and island biogeography. Yet, questions regarding the relative impact of the layered biogeographic barriers, such as deep-water trenches and isolated island systems, on faunal diversification remain underexplored. One such barrier is Wallace’s Line, a significant biogeographic boundary that largely separates Australian and Asian biodiversity. To assess the relative roles of biogeographic barriers—specifically isolated island systems and Wallace’s Line—we investigated the tempo and mode of diversification in a diverse avian radiation, Corvides (Crows and Jays, Birds-of-paradise, Vangas, and allies). We combined a genus-level data set of thousands of ultraconserved elements (UCEs) and a species-level, 12-gene Sanger sequence matrix to produce a well-resolved supermatrix tree that we leveraged to explore the group’s historical biogeography and the effects of the biogeographic barriers on their macroevolutionary dynamics. The tree is well resolved and differs substantially from what has been used extensively for past comparative analyses within this group. We confirmed that Corvides, and its major constituent clades, arose in Australia and that a burst of dispersals west across Wallace’s Line occurred after the uplift of Wallacea during the mid-Miocene. We found that dispersal across this biogeographic barrier was generally rare, though westward dispersals were two times more frequent than eastward dispersals. Wallacea’s central position between Sundaland and Sahul no doubt acted as a bridge for island-hopping dispersal out of Australia, across Wallace’s Line, to colonize the rest of Earth. In addition, we found that the complex island archipelagoes east of Wallace’s Line harbor the highest rates of net diversification and are a substantial source of colonists to continental systems on both sides of this biogeographic barrier. Our results support emerging evidence that island systems, particularly the geologically complex archipelagoes of the Indo-pacific, are drivers of species diversification. [Historical biogeography; island biogeography; Melanesia; molecular phylogenetics; state-dependent diversification and extinction.]more » « less
-
Abstract Around the world, many species are confined to “Sky Islands,” with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low‐elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly “pushed off the top” by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5–0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.more » « less
-
Tropical islands are renowned as natural laboratories for evolutionary study. Lineage radiations across tropical archipelagos are ideal systems for investigating how colonization, speciation, and extinction processes shape biodiversity patterns. The expansion of the island thrush across the Indo-Pacific represents one of the largest yet most perplexing island radiations of any songbird species. The island thrush exhibits a complex mosaic of pronounced plumage variation across its range and is arguably the world’s most polytypic bird. It is a sedentary species largely restricted to mountain forests, yet it has colonized a vast island region spanning a quarter of the globe. We conducted a comprehensive sampling of island thrush populations and obtained genome-wide SNP data, which we used to reconstruct its phylogeny, population structure, gene flow, and demographic history. The island thrush evolved from migratory Palearctic ancestors and radiated explosively across the Indo-Pacific during the Pleistocene, with numerous instances of gene flow between populations. Its bewildering plumage variation masks a biogeographically intuitive stepping stone colonization path from the Philippines through the Greater Sundas, Wallacea, and New Guinea to Polynesia. The island thrush’s success in colonizing Indo-Pacific mountains can be understood in light of its ancestral mobility and adaptation to cool climates; however, shifts in elevational range, degree of plumage variation and apparent dispersal rates in the eastern part of its range raise further intriguing questions about its biology.more » « less
-
A lineage colonizing a geographic region with no competitors may exhibit rapid diversification due to greater ecological opportunity. The resultant species diversity of this primary-colonizing (incumbent) clade may limit subsequent lineages' ability to persist unless these non-incumbent lineages are ecologically distinct. We compare the diversity in diet-related mandibular morphology of two sympatric murid rodent clades endemic to Luzon Island, Philippines—incumbent Phloeomyini and secondary-colonizing Chrotomyini—to the mandibular morphological diversity of Sahul Hydromyini, the sister clade of Chrotomyini and the incumbent murid lineage on the supercontinent of Sahul. This three-clade comparison allows us to test the hypothesis that incumbent lineages can force persistent ecological distinction of subsequent colonists at the time of colonization and throughout the subsequent history of the two sympatric clades. We find that Chrotomyini forms a subset of the diversity of their clade plus Sahul Hydromyini that minimizes overlap with Phloeomyini. We also infer that this differentiation extends to the stem ancestor of Chrotomyini and Sahul Hydromyini, consistent with a biotic filter imposed by Phloeomyini. Our work illustrates that incumbency has the potential to have a profound influence on the ecomorphological diversity of colonizing lineages at the island scale even when the traits in question are evolving at similar rates among independently colonizing clades.more » « less
An official website of the United States government

