skip to main content

This content will become publicly available on November 13, 2024

Title: Association of Equatorward Extended Auroral Streamers With Overshielding Conditions at Equatorial Latitudes: First Observations

We report the first observations of the association between equatorward extending streamers and overshielding using the THEMIS all‐sky imagers and ground magnetometers. Because auroral streamers indicate plasma sheet flow bursts, these observations uncover the effect of flow bursts on overshielding. Results show that, in general, bright equatorward extended streamers were associated with an increase in equatorial electrojet (EEJ) on the nightside and a decrease in the dayside EEJ, indicating a striking correspondence between auroral streamers and overshielding conditions. Thus, the driving of overshielding at equatorial latitudes can be identified via bright equatorward extended streamers, indicating that flow bursts are an alternate means to discern the earthward injections that increase the region 2 field aligned currents and associated overshielding electric fields. Repetitive auroral streamers were associated with repetitive overshielding, resulting in a stepwise development of the dayside and nightside EEJ. The stepwise intensifications were also observed in the midlatitude positive bay and Pi2 pulsations. Our results could explain the occurrence of overshielding conditions at equatorial latitudes during substorms and nonsubstorm times without a northward turning of IMF‐Bz. As seen through streamers, the localized current structures (wedgelets) associated with flow bursts giving injection that leads to overshielding is titled northeast‐to‐southwest. Our results add a new element to the understanding of high‐to‐low latitude electrodynamical coupling by demonstrating the association between bright equatorward extended auroral streamers and enhanced shielding electric fields caused by earthward injections associated with flow bursts.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The role of diffuse electron precipitation in the formation of subauroral polarization streams (SAPS) is investigated with the Multiscale Atmosphere‐Geospace Environment (MAGE) model. Diffuse precipitation is derived from the distribution of drifting electrons. SAPS manifest themselves as a separate mesoscale flow channel in the duskside ionosphere, which gradually merges with the primary auroral convection toward dayside as the equatorward auroral boundary approaches the poleward Region‐2 field‐aligned currents (FACs) boundary. SAPS expand to lower latitudes and toward the nightside during the main phase of a geomagnetic storm, associated with magnetotail earthward plasma flows building up the ring current and intensifying Region‐2 FACs and electron precipitation. SAPS shrink poleward and sunward as the interplanetary magnetic field turns northward. When diffuse precipitation is turned off in a controlled MAGE simulation, ring current and duskside Region‐2 FACs become weaker, but subauroral zonal ion drifts are still comparable to auroral convection. However, subauroral and auroral convection manifest as a single broad flow channel without showing any mesoscale structure. SAPS overlap with the downward Region‐2 FACs equatorward of diffuse precipitation, where poleward electric fields are strong due to a low conductance in the subauroral ionosphere. The Region‐2 FACs extend to latitudes lower than the diffuse precipitation because the ring current protons penetrate closer to the Earth than the electrons do. This study reproduces the key physics of SAPS formation and their evolution in the coupled magnetosphere‐ionosphere during a geomagnetic storm. Diffuse electron precipitation is demonstrated to play a critical role in determining SAPS location and structure.

    more » « less
  2. Abstract

    Within the fully integrated magnetosphere-ionosphere system, many electrodynamic processes interact with each other. We review recent advances in understanding three major meso-scale coupling processes within the system: the transient field-aligned currents (FACs), mid-latitude plasma convection, and auroral particle precipitation. (1) Transient FACs arise due to disturbances from either dayside or nightside magnetosphere. As the interplanetary shocks suddenly compress the dayside magnetosphere, short-lived FACs are induced at high latitudes with their polarity successively changing. Magnetotail dynamics, such as substorm injections, can also disturb the current structures, leading to the formation of substorm current wedges and ring current disruption. (2) The mid-latitude plasma convection is closely associated with electric fields in the system. Recent studies have unraveled some important features and mechanisms of subauroral fast flows. (3) Charged particles, while drifting around the Earth, often experience precipitating loss down to the upper atmosphere, enhancing the auroral conductivity. Recent studies have been devoted to developing more self-consistent geospace circulation models by including a better representation of the auroral conductance. It is expected that including these new advances in geospace circulation models could promisingly strengthen their forecasting capability in space weather applications. The remaining challenges especially in the global modeling of the circulation system are also discussed.

    more » « less
  3. Abstract

    Auroral arcs and diffuse auroras are common phenomena at high latitudes, though characteristics of their source plasma and fields have not been well understood. We report the first observation of fields and particles including their pitch‐angle distributions in the source region of auroral arcs and diffuse auroras, using data from the Arase satellite atL ~ 6.0–6.5. The auroral arcs appeared and expanded both poleward and equatorward at local midnight from ~0308 UT on 11 September 2018 at Nain (magnetic latitude: 66°), Canada, during the expansion phase of a substorm, while diffuse auroras covered the whole sky after 0348 UT. The top part of auroral arcs was characterized by purple/blue emissions. Bidirectional field‐aligned electrons with structured energy‐time spectra were observed in the source region of auroral arcs, while source electrons became isotropic and less structured in the diffuse auroral region afterwards. We suggest that structured bidirectional electrons at energies below a few keV were caused by upward field‐aligned potential differences (upward electric field along geomagnetic field) reaching high altitudes (~30,000 km) above Arase. The bidirectional electrons above a few keV were probably caused by Fermi acceleration associated with the observed field dipolarization. Strong electric‐field fluctuations and earthward Poynting flux were observed at the arc crossing and are probably also caused by the field dipolarization. The ions showed time‐pitch‐angle dispersion caused by mirror reflection. These results indicate a clear contrast between auroral arcs and diffuse auroras in terms of source plasma and fields and generation mechanisms of auroral arcs in the inner magnetosphere.

    more » « less
  4. Abstract

    Medium‐scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid‐latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high‐resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that nightside MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, dayside MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid‐latitudes. In this study, we present mid‐latitude MSTIDs observed in de‐trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peakKpreaching 9) on 7–8 September 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching ±500 m/s as the MSTIDs passed through the fields‐of‐view. In detrended TEC, these MSTIDs produced perturbations reaching ∼50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south‐westward direction with a time period of ∼15 min. Projecting de‐trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs.

    more » « less
  5. Abstract

    The rapid changes of magnetic fields associated with large, isolated magnetic perturbations with amplitudes |ΔB| of hundreds of nanotesla and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents statistical summaries of the characteristics of nightside magnetic perturbation events observed in Eastern Arctic Canada from 2014 through 2017 using data from stations that are part of four magnetometer arrays: MACCS, AUTUMNX, CANMOS, and CARISMA, covering a range of magnetic latitudes from 68 to 78°. Most but not all of the magnetic perturbation events were associated with substorms: roughly two thirds occurred between 5 and 30 min after onset. The association of intense nighttime magnetic perturbation events with magnetic storms was significantly reduced at latitudes above 73°, presumably above the nominal auroral oval. A superposed epoch study of 21 strong events at Cape Dorset showed that the largest |dB/dt| values appeared within an ~275‐km radius that was associated with a region of shear between upward and downward field‐aligned currents. The statistical distributions of impulse amplitudes of both |ΔB| and |dB/dt| fit well the log‐normal distribution at all stations. The |ΔB| distributions are similar over the magnetic latitude range studied, but the kurtosis and skewness of the |dB/dt| distributions show a slight increase with latitude. Knowledge of the statistical characteristics of these events has enabled us to estimate the occurrence probability of extreme impulsive disturbances using the approximation of a log‐normal distribution.

    more » « less