skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring income and racial inequality in preparedness for Hurricane Ida (2021): insights from digital footprint data
Abstract Preparedness for adverse events is critical to building urban resilience to climate-related risks. While most extant studies investigate preparedness patterns based on survey data, this study explores the potential of big digital footprint data (i.e. population visits to points of interest (POI)) to investigate preparedness patterns in the real case of Hurricane Ida (2021). We further investigate income and racial inequality in preparedness by combining the digital footprint data with demographic and socioeconomic data. A clear pattern of preparedness was seen in Louisiana with aggregated visits to grocery stores, gasoline stations, and construction supply dealers increasing by nearly 9%, 12%, and 10% respectively, representing three types of preparedness: survival, mobility planning, and hazard mitigation. Preparedness for Hurricane Ida was not seen in New York and New Jersey states. Inequality analyses for Louisiana across census block groups (CBGs) demonstrate that CBGs with higher income have more (nearly 8% greater) preparedness in visiting gasoline stations, while CBGs with a larger percentage of the white population have more preparedness in visiting grocery stores (nearly 12% more) in the lowest income groups. The results indicate that income and racial inequality differ across different preparedness in terms of visiting different POIs.  more » « less
Award ID(s):
1652448
PAR ID:
10473850
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
12
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 124021
Size(s):
Article No. 124021
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hurricanes are one of the most catastrophic natural hazards faced by residents of the United States. Improving the public’s hurricane preparedness is essential to reduce the impact and disruption of hurricanes on households. Inherent in traditional methods for quantifying and monitoring hurricane preparedness are significant lags, which hinder effective monitoring of residents’ preparedness in advance of an impending hurricane. This study establishes a methodological framework to quantify the extent, timing, and spatial variation of hurricane preparedness at the census block group level using high-resolution location intelligence data. Anonymized cell phone data on visits to points-of-interest for each census block group in Harris County before 2017 Hurricane Harvey were used to examine residents’ hurricane preparedness. Four categories of points-of-interest, grocery stores, gas stations, pharmacies and home improvement stores, were identified as they have close relationship with hurricane preparedness, and the daily number of visits from each CBG to these four categories of POIs were calculated during preparation period. Two metrics, extent of preparedness and proactivity, were calculated based on the daily visit percentage change compared to the baseline period. The results show that peak visits to pharmacies often occurred in the early stage of preparation, whereas the peak of visits to gas stations happened closer to hurricane landfall. The spatial and temporal patterns of visits to grocery stores and home improvement stores were quite similar. However, correlation analysis demonstrates that extent of preparedness and proactivity are independent of each other. Combined with synchronous evacuation data, CBGs in Harris County were divided into four clusters in terms of extent of preparedness and evacuation rate. The clusters with low preparedness and low evacuation rate were identified as hotspots of vulnerability for shelter-in-place households that would need urgent attention during response. Hence, the research findings provide a new data-driven approach to quantify and monitor the extent, timing, and spatial variations of hurricane preparedness. Accordingly, the study advances data-driven understanding of human protective actions during disasters. The study outcomes also provide emergency response managers and public officials with novel data-driven insights to more proactively monitor residents’ disaster preparedness, making it possible to identify under-prepared areas and better allocate resources in a timely manner. 
    more » « less
  2. Shaw, Shih-Lung; Sui, Daniel (Ed.)
    When the World Health Organization (WHO) announced the pandemic of COVID-19, people around the globe scattered to stores for groceries, supplies, and other miscellaneous items in preparation for quarantine. The dynamics of retail visits changed dramatically due to the pandemic outbreak. The study intends to analyze how the store visit patterns have changed due to the lockdown policies during the COVID-19 pandemic. Using mobile phone location data, we build a time-aware Huff model to estimate and compare the visiting probability of different brands of stores over different time periods. We are able to identify certain retail and grocery stores that have more or fewer visits due to the pandemic outbreak, and we detect whether there are any trends in visiting certain retail establishments (e.g., department stores, grocery stores, fast-food restaurants, and cafes) and how the visiting patterns have adjusted with lockdowns. We also make comparisons among brands across three highly populated U.S. cities to identify potential regional variability. It has been found that people in large metropolitan areas with a well-developed transit system tend to show less sensitivity to long-distance visits. In addition, Target, which is a department store, is found to be more negatively affected by longer-distance trips than other grocery stores after the lockdown. The findings can be further applied to support policymaking related to public health, urban planning, transportation, and business in post-pandemic cities. 
    more » « less
  3. Hurricanes are one of the most devastating earth surface processes. In 2020 and 2021, Hurricanes Zeta and Ida pounded the Mississippi River Delta in two consecutive years, devastated South Louisiana, and raised tremendous concerns for scientists and stakeholders around the world. This study presents a high-resolution spatial-temporal analysis incorporating planialtimetric data acquired via LIDAR, drone, and satellite to investigate the shoreline dynamics near Port Fourchon, Louisiana, the eye of Ida at landfall, before and after the beach nourishment project and recent hurricane landfalls. The remote sensing analysis shows that the volume of the ~2 km studied beachfront was reduced by 240,858 m3 after consecutive landfalls of Hurricanes Zeta and Ida in 2020 and 2021, while 82,915 m3 of overwash fans were transported to the backbarrier areas. Overall, the studied beach front lost almost 40% of its volume in 2019, while the average dune crest height was reduced by over 1 m and the shoreline retreated ~60 m after the two hurricane strikes. Our spatial-temporal dataset suggests that the Louisiana Coastal Protection and Restoration Authority’s (CPRA’s) beach nourishment effort successfully stabilized the beach barrier at Port Fourchon during the hurricane-quiescent years but was not adequate to protect the shoreline at the Mississippi River Delta from intense hurricane landfalls. Our study supports the conclusion that, in the absence of further human intervention, Bay Champagne will likely disappear completely into the Gulf of Mexico within the next 40 years. 
    more » « less
  4. null (Ed.)
    Cities seek nuanced understanding of intraurban inequality in energy use, addressing both income and race, to inform equitable investment in climate actions. However, nationwide energy consumption surveys are limited (<6,000 samples in the United States), and utility-provided data are highly aggregated. Limited prior analyses suggest disparity in energy use intensity (EUI) by income is ∼25%, while racial disparities are not quantified nor unpacked from income. This paper, using new empirical fine spatial scale data covering all 200,000 households in two US cities, along with separating temperature-sensitive EUI, reveals intraurban EUI disparities up to a factor of five greater than previously known. We find 1) annual EUI disparity ratios of 1.27 and 1.66, comparing lowest- versus highest-income block groups (i.e., 27 and 66% higher), while previous literature indicated only ∼25% difference; 2) a racial effect distinct from income, wherein non-White block groups (highest quintile non-White percentage) in the lowest-income stratum reported up to a further ∼40% higher annual EUI than less diverse block groups, providing an empirical estimate of racial disparities; 3) separating temperature-sensitive EUI unmasked larger disparities, with heating–cooling electricity EUI of lowest-income block groups up to 2.67 times (167% greater) that of highest income, and high racial disparity within lowest-income strata wherein high non-White (>75%) population block groups report EUI up to 2.56 times (156% larger) that of majority White block groups; and 4) spatial scales of data aggregation impact inequality measures. Quadrant analyses are developed to guide spatial prioritization of energy investment for carbon mitigation and equity. These methods are potentially translatable to other cities and utilities. 
    more » « less
  5. Abstract Natural hazards cause disruptions in access to critical facilities, such as grocery stores, impeding residents’ ability to prepare for and cope with hardships during the disaster and recovery; however, disrupted access to critical facilities is not equal for all residents of a community. In this study, we examine disparate access to grocery stores in the context of the 2017 Hurricane Harvey in Harris County, Texas. We utilized high-resolution location-based datasets in implementing spatial network analysis and dynamic clustering techniques to uncover the overall disparate access to grocery stores for socially vulnerable populations during different phases of the disaster. Three access indicators are examined using network-centric measures: number of unique stores visited, average trip time to stores, and average distance to stores. These access indicators help us capture three dimensions of access: redundancy , rapidity , and proximity . The findings show the insufficiency of focusing merely on the distributional factors, such as location in a food desert and number of facilities, to capture the disparities in access, especially during the preparation and impact/short-term recovery periods. Furthermore, the characterization of access by considering combinations of access indicators reveals that flooding disproportionally affects socially vulnerable populations. High-income areas have better access during the preparation period as they are able to visit a greater number of stores and commute farther distances to obtain supplies. The conclusions of this study have important implications for urban development (facility distribution), emergency management, and resource allocation by identifying areas most vulnerable to disproportionate access impacts using more equity-focused and data-driven approaches. 
    more » « less